Abd El-Dayem, G.A.; Ramadan, A.H. and Ali, H.S. (2020): Prevalence of virulence factors and antibiotic resistance genes in shiga toxin-producing Escherichia coli isolated from quails. Assiut Vet. Med. J., 66 (167):84-99.
Abd El-Ghany, W.A. (2019): A comprehensive review on the common emerging diseases in quails. J. World Poult. Res., 9(4): 160-174.
Abd El-Glil, Y.; Atia, A.; Helmy, S.; El-Naeneey, E. and Hamouda, A. (1993): Studies on the bacterial causes of early quail mortalities. Zagazig Vet. J. 21(3): 547-557.
Ahmed, H.A.; El-Hofy, F.I.; Shafik, S.M.; Abd El Rahman, M.A. and El Said, G.A. (2016): Characterization of virulence-associated genes, antimicrobial resistance genes and class 1 Integrons in Salmonella enterica serovar Typhimurium isolates from chicken meat and humans in Egypt. Foodborne Pathog. Dis., 13(6):281-288.
Ameh, J.; Adamu, J. and Ikpa, T. (2011): Experimental infection of chicks with avian Enteropathogenic Escherichia coli (APEC) Serotype O78: K80. African Scientist, 12: (1), 27-32.
Ammar, A.M.; Abdeen, E.E.; Abo-Shama, U.H.; Fekry, E. and Elmahallawy, E.K. (2018): Molecular characterization of virulence and antibiotic resistance genes among Salmonella serovars isolated from broilers in Egypt. Lett. Appl. Microbiol., 68:188-195.
Antunes, P.; Machado, J. and Peixe, L. (2006): Characterization of antimicrobial resistance and class 1 and 2 integrons in Salmonella enterica isolates from different sources in Portugal. J. Antimicrob. Chemother., 58: 297-304.
Ateba, C. and Mbewe, M. (2014): Genotypic Characterization of Escherichia coli O157:H7 isolates from different sources in the North-West Province, South Africa, using Enterobacterial Repetitive Intergenic Consensus PCR Analysis. Int. J. Mol. Sci., 15 (6): 9735-9747.
Barnes, H.J. and Gross, W.B. (1997): Colibacillosis. In: Calnek, B.W.; Barens, H.J.; Beard, C.W.; McDougald, L.R. and Saif, Y.M. (Eds.), Diseases of Poultry, 10th Ed. Iowa State University Press, Ames, Iowa, pp: 131-41.
Bisi-Johnson, M.A.; Obi, C.L.; Vasaikar, S.D.; Baba, K.A. and Hattori, T. (2011): Molecular basis of virulence in clinical isolates of Escherichia coli and Salmonella species from a tertiary hospital in the Eastern Cape, South Africa. Gut Pathog., 2011, 3:9.
Blair, J.; Webber, M.; Baylay, A.; Ogbolu, D. and Piddock, L. (2015): Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 13: 42-51.
Boris, H.; Borka, S.; Gordan, K. and Fani, K. (2012): Antimicrobial resistance and serotyping of Salmonella enterica subsp. enterica isolated from poultry in Croatia. Vet. Arhiv., 82:371-381.
Boroomand, Z.; Jafari, R.; Gharibi, D. and Kazemi, K. (2018): An Investigation into Enterobacteriaceae responsible for early mortality in Japanese quail chicks and their antibiotic susceptibility patterns. Arch. Razi Inst., 73(4): 277-285.
Capuano, F.; Mancusi, A.; Capparelli, R.; Esposito, S. and Proroga, Y.T. (2013): Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. Foodborne Pathog. Dis., 10 (11): 963-968.
CLSI (2006): Methods for Antimicrobial Broth Dilution and Disk Diffusion Susceptibility Testing of Bacteria Isolated From Aquatic Animals. 2nd Ed. CLSI guideline VET03. Wayne, PA: Clinical and Laboratory Standards Institute.
Da Cunha, R.G. (2009): Quail meat-an undiscovered alternative. World Poult., 25:12-14.
Darwin, K.H. and Miller, V.L. (1999): Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev., 12, 405-428.
Darwish, W.S.; Eldaly, E.; El-Abbasy, M.; Ikenaka, Y.; Nakayama, S. and Ishizuka, M. (2013): Antibiotic residues in food: African scenario. Jap. J. Vet. Res., 61: S13-S22.
Dawes, F.; Kuzevski, A.; Bettelheim, K.; Hornitzky, M.; Djordjevic, S. and Walker, M. (2010): Distribution of class 1 integrons with IS 26-mediated deletions in their 3′-conserved segments in Escherichia coli of human and animal origin. PLoS ONE, 5:e12754.
Dipineto, L.; Russo, T.P.; Gargiulo, A.; Borrelli, L.; De Luca Bossa, L.M.; Santaniello, A.; Menna, P.L. and Fioretti, A. (2014): Prevalence of enteropathogenic bacteria in common quail (Coturnix coturnix). Avian Pathol., 43(6): 498-500.
Dotto, G.; Giacomelli, M.; Grilli, G.; Ferrazzi, V.; Carattoli, A.; Fortini, D. and Piccirillo, A. (2014): High prevalence of oqxAB in
Escherichia coli isolates fromdomestic and wild lagomorphs in Italy. Microbial. Drug Resistance, 20 (2): 118-123.
Doublet, B.; Lailler, R.; Meunier, D.; Brisabois, A.; Boyd, D.; Mulvey, M.R.; Chaslus-Dancla, E. and Cloeckaert, A. (2003): Variant Salmonella genomic island 1 antibiotic resistance gene cluster in Salmonella enterica Serovar Albany. Emerg. Infect. Dis., 9 (5): 585-591.
Edwards, P.R. and Ewing, W.H. (1972): Identification of Enterobacteriaceae, 3rd Ed. Burgess Publishing Co., Minneapolis.
Eid, H.I.; Algammal, A.M.; Nasef, S.A.; Elfeil, W.K. and Mansour, G.H. (2016): Genetic variation among avian pathogenic E. coli strains isolated from broiler chickens. Asian J. Anim. Vet. Adv., 11 (6): 350-356.
El Fertas-Aissani, R.; Messai, Y.; Alouache, S. and Bakour, R. (2013): Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathologie Biologie, 61: 209-216.
El-Demerdash, M.Z.; Hanan, M.F.A. and Asmaa, E.A. (2013): Studies on mortalities in baby quail chicks. The 6th Animal Wealth Research Conf. in the Middle East & North Africa, Hurghada, pp. 63 - 76.
El-Sharkawy, H.; Tahoun, A.; El-Gohary, A.A.; El-Abasy, M.; El-Khayat, F.; Gillespie, T.; Kitade, Y.; Hafez, H.M.; Neubauer, H. and El-Adawy, H. (2017): Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathog., 9:8.
Enany, M.E.; Algammal, A.M.; Nasef, S.A.; Abo-Eillil, S.A.M.; Bin-Jumah, M.; Taha, A.E. and Allam, A.A. (2019): The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Expr., 9: 192.
Fang, F.C.; Sandler, N. and Libby, S.J. (2005): Liver abscess caused by magA Klebsiella pneumoniae in North America. J. Clin. Microbiol., 43: 991-992.
Farghaly, E.M.; Samy, A. and Roshdy, H. (2017): Wide prevalence of critically important antibiotic resistance in Egyptian Quail farms with mixed infections. Vet. Scie. Res. Review, 3(1): 17-24.
Firoozeh, F.; Mahluji, Z.; Khorshidi, A. and Zibaei, M. (2019): Molecular characterization of class 1, 2 and 3 integrons in clinical multi-drug resistant Klebsiella pneumoniae isolates. Antimicrob. Resist. Infect. Control, 8:59.
Galán, J.E.; Ginocchio, C. and Costeas, P. (1992): Molecular and functional characterization of the
Salmonella invasion gene
invA: homology of
InvA to members of a new protein family. J. Bacteriol., 174 (13): 4338-4349.
Grimont, P.A. and Weill, F.X. (2007): Antigenic formulas of the Salmonella Servers, WHO Collaborating Center for reference and research on Salmonella, Paris (9th Ed): 1-166.
Hassan, A.M.; Mohammed, D.A.; Hussein, K.N. and Hussen, S.H. (2017): Comparison among three lines of quail for egg quality characters. Science Journal of University of Zakho, 5 (4): 296-300.
Haynes, R.L. and Smith, T.W. (2003): Hatchery Management Guide for Game Birds and Small Poultry Flock Owners. Online Publication of Mississippi State University.
Hendriksen, R.S.; Vieira, A.R.; Karlsmose, S.; Lo Fo, W.D.; Jensen, A.B.; Wegener, H.C. and Aarestrup, F.M. (2011): Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis., 8: 887-900.
Holt, J.G.; Krieg, N.R.; Sneath, P.H.; Staley, J.T. and Williams, S.T. (1994): Bergey’s Manual of Determinative Bacteriology. 9th Ed., Lippincott Williams & Wilkins, USA.
Ibrahim, W.A.; Marouf, S.A.; Erfan, A.M.; Nasef, S.A. and El Jakee, J.K. (2019): The occurrence of disinfectant and antibiotic-resistant genes in Escherichia coli isolated from chickens in Egypt. Vet. World, 12: 141-145.
Ibrahim, W.F. (2019): Isolation, identification and antimicrobial susceptibility testing of recent E. coli serotypes from Japanese Quails reared in Sharkia Governorate, Egypt. Damanhour Journal of Veterinary Sciences, 1(2): 14-17.
Jahantigh, M.; Rashki, A. and Najimi, M. (2013): A study on bacterial flora and antibacterial resistance of yolk sac infection in Japanese quail (Coturnix japonica). Comp. Clin. Pathol., 22: 645–648
Kabir, S.M.L. (2010): Avian Colibacillosis and Salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int. J. Environ. Res. Public Health, 7: 89-114.
Khoshbakht, R.; Seifi, S.; Karimi, A. and Khosravi, M. (2017): Molecular identification of Campylobacter, Arcobacter, and Salmonella in Japanese quail (Coturnix japonica) reared in farms of Northern Iran. J. Food Qual. Hazards Control, 4: 58-62.
Li, P.; Zhu, T.; Zhou, D.; Lu, W.; Liu, H.; Sun, Z.; Ying, J.; Lu, J.; Lin, X.; Li, K.; Ying, J.; Bao, Q. and Xu, T. (2020): Analysis of resistance to florfenicol and the related mechanism of dissemination in different animal-derived bacteria. Front. Cell. Infect. Microbiol., 10, 369.
Lima, A.M.; de Melo, M.E.; Alves, L.C.; Brayner, F.A. and Lopes, A.C. (2014): Investigation of class 1 integrons in Klebsiella pneumoniae clinical and microbiota isolates belonging to different phylogenetic groups in Recife, State of Pernambuco. Rev. Soc. Bras. Med. Trop., 47: 165–169.
Lu, J.; Zhang, J.; Xu, L.; Liu, Y.; Li, P.; Zhu, T.; Cheng, C.; Lu, S.; Xu, T.; Yi, H.; Li, K.; Zhou, W.; Li, P.; Ni, L. and Bao, Q. (2018): Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China. Antimicrob. Resist. Infect. Control, 7: 127
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T. and Monnet, D.L. (2012): Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 18: 268-281.
Mahon, C.R. and Lehman, D.C. (2019): Textbook of Diagnostic Microbiology.
6th Ed., Elsevier Inc., USA.
Mellata, M.; Touchman, J.W. and Curtiss, R. (2009): Full sequence and comparative analysis of the plasmid pAPEC-1 of avian pathogenic E. coli χ7122 (O78:K80:H9). PLoS One, 4 (1): e4232.
Melo, P.D.; Ferreira, L.M.; Filho, A.N.; Zafalon, L.F.; Vicente, H.I. and Souza, V.D. (2013): Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Braz. J. Microbiol., 44: 119-124.
Mosaad, A.A.; El-Shorbagy, M.A. and El-Boraei (2000): Studies on Salmonellosis in quiles. Minufiya Veterinary Medical Journal, 1 (1): 119-128.
Nabil, N.M. and Yonis, A.E. (2019): Isolation of Salmonella characterized by biofilm formation and disinfectant resistance from broiler chickens. A. J. V. S., 62(2): 26-36.
Nikaido, H. (2009): Multidrug resistance in bacteria. Annu. Rev. Biochem., 78:119.
Noguchi, N.; Suwa, J.; Narui, K.; Sasatsu, M.; Ito, T.; Hiramatsu, K. and Song, J. (2005): Susceptibilities to antiseptic agents and distribution of antiseptic-resistance genes qacA/B and smr of methicillin-resistant Staphylococcus aureus isolated in Asia during 1998 and 1999. J. Med. Microbiol., 54 (6): 557-565.
Odumosu, B.T.; Adeniyi, B.A. and Chandra, R. (2013): Analysis of integrons and associated gene cassettes in clinical isolates of multidrug resistant Pseudomonas aeruginosa from Southwest Nigeria. Ann. Clin. Microbiol. Antimicrob.,12:29.
Olivera, S.D.; Rodenbusch, C.R.; Ce, M.C.; Rocha, S.L.S. and Canal, C.W. (2003): Evaluation of selective and non-selective enrichment PCR procedures for Salmonella detection. Lett. Appl. Microbiol., 36: 217-221.
Palanisamy, S. and Bamaiyi, P.H. (2015): Isolation and antibiogram of Salmonella spp. from quails in a farm from Kelantan, Malaysia. J. Vet. Adv., 5 (12):1191-1198.
Rowe-Magnus, D.A.; Guerout, A.M. and Mazel, D. (2002): Bacterial resistance evolution by recruitment of superintegron gene cassettes. Mol. Microbiol., 43:1657-1669.
Roy, P.; Purushothaman, V.; Koteeswaran, A. and Dhillon, A.S. (2006): Isolation, characterization, and antimicrobial drug resistance pattern of Escherichia coli isolated from Japanese quail and their environment. J. Appl. Poult. Res., 15 (3): 442-446.
Saha, O.; Hoque, M.N.; Islam, O.K.; Rahaman, Md. M.; Sultana, M. and Hossain, M.A. (2020): Multidrug-resistant avian pathogenic Escherichia coli strains and association of their virulence genes in Bangladesh. Microorganisms, 8, 1135.
Salehi, M. and Ghanbarpour, R. (2010): Phenotypic and genotypic properties of Escherichia coli isolated from colisepticemic cases of Japanese quail. Trop. Ainm. Health Prod., 42: 1497-1504.
Santos, T.; Murakami, A.; Fanhani, J. and Oliveira, C. (2011): Production and reproduction of egg-and meat-type quails reared in different group sizes. Revista Brasileira de Ciencia Avicola, 13: 9-14.
Stepanović, S.; Vuković, D.; Veronika, H.; Bonaventura, G.D.; Djukić, S.; Ćirković, I. and Ruzicka, F. (2007): Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS, 115 (8):891-899.
Struve, C.; Bojer, M.; Nielsen, F.M.; Hansen, D.S. and Krogfelt, K.A. (2005): Investigation of the putative virulence gene magA in a worldwide collection of 495 Klebsiella isolates: magA is restricted to the gene cluster of Klebsiella pneumoniae capsule serotype K1. J. Med. Microbiol., 54: 1111-1113.
WHO (2014): Antimicrobial resistance: Global report on surveillance. Geneva, Switzerland.
Yeh, K.; Kurup, A.; Siu, L.K.; Koh, Y.L.; Fung, C.; Lin, J.; Chen, T.; Chang, F. and Koh, T. (2007): Capsular Serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumonia liver abscess in Singapore and Taiwan. J. Clin. Microbiol., 45(2): 466–471.
Younis, G.; Awad, A.; El-Gamal, A. and Hosni, R. (2016): Virulence properties and antimicrobial susceptibility profiles of Klebsiella species recovered from clinically diseased broiler chicken. Adv. Anim. Vet. Sci. 4(10):536-542.
Yousef, S.A.; Ammar, A.M. and Ahmed, D.A. (2015): Serological and molecular typing of avian pathogenic E. coli originated from outbreaks of Colibacillosis in chicken flocks. International Journal of Science and Research, 4:2082-2088.
Yusuf, M. S.; El Nabtiti, A.S. and Cui, H. (2016): Effects of NENP vs LELP diets on some laying and reproductive performance parameters of Japanese quail’s hens. J. Ad. Agric. Technol., 3 (2): 132-135.
Zhao, S.; White, D.G.; Ge, B.; Ayers, S.; Friedman, S.; English, L.; Wagner, D.; Gaines, S. and Meng, J. (2001): Identification and characterization of integron-mediated antibiotic resistance among shiga toxin-producing Escherichia coli isolates. Appl. Environ. Microbiol., 67 (4): 1558-1564.