Isolation and Characterization of some Enterobacteriaceae Isolated from Early Mortalities in Japanese Quail Chicks at Qena Governorate, Egypt

Document Type : Research article

Authors

1 Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt

2 Department of Poultry Diseases, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt

3 Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt.

4 Department of Microbiology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt.

Abstract

Quail farms become widely spread in Egypt as a source of meat. Early mortality of quail
chicks is one of quail breeding limiting factors. This study was performed to study role of
some
Enterobacteriaceae as a parable cause of early mortality in South Valley University
quail farm, characterize isolates phenotypically and serologically, determine their
antimicrobial sensitivity and to screen all isolates for presence of florfenicol resistance gene
(
floR), Quaternary ammonium compounds resistance gene (QacA/B) and class 1 integrons
gene (
Int1) and to screen E. coli, Salmonella and K. pneumoniae isolates for intimin encoding
gene (
eaeA), invasive encoding gene (invA) and mucoviscosity associated gene (magA)
respectively. Therefore, 80 freshly dead or moribund Japanese quail chicks under 12 days of
age were collected from this farm during the period from December 2020 to April 2021 for
clinical assessment and bacterial isolation. Totally, 14
E. coli, 6 Salmonella and 1 K.
pneumoniae
isolates were isolated and phenotypically identified from the internal organs of
the examined quail chicks with percentage of (17.5%), (7.5%) and (1.25%) respectively.
E.
coli
isolates belonged to 5 different O-serogroups comprising O86 (28.6%), O78 (21.4%), O26
(14.3%), O55 (14.3%) and O164 (7.1%) in addition to 2 nontypeable isolates (14.3%) while all
Salmonella isolates were serologically identified as S. Typhimurium with antigenic formula
1,4,[5],12:i:1,2. All isolates were weak biofilm producer except (33.3%) of
S. Typhimurium
isolates and showed Congo red binding activity except (28.6%) of E. coli isolates while only
(14.3%) of
E. coli isolates had hemolytic activity. Antimicrobial susceptibility testing for the
isolates to 10 different antibiotics revealed that all the isolates were sensitive only to
chloramphenicol and oxytetracycline except (42.9%) and (85.7%) of
E. coli isolates
respectively and to azithromycin except (35.7%) of
E. coli isolates and K. pneumoniae. PCR
revealed that all the isolates harbor
Int1 and floR genes, (100%) and (33.3%) of S.
Typhimurium
isolates harbor invA and QacA/B genes respectively and only (21.4%) of E. coli
isolates harbor eaeA and QacA/B genes. It was concluded that E. coli and S. Typhimurium are
a major cause of early mortality of Japanese quail chicks.






Keywords

Main Subjects


Abd El-Dayem, G.A.; Ramadan, A.H. and Ali, H.S. (2020): Prevalence of virulence factors and antibiotic resistance genes in shiga toxin-producing Escherichia coli isolated from quails. Assiut Vet. Med. J., 66 (167):84-99.
Abd El-Ghany, W.A. (2019): A comprehensive review on the common emerging diseases in quails. J. World Poult. Res., 9(4): 160-174.
Abd El-Glil, Y.; Atia, A.; Helmy, S.; El-Naeneey, E. and Hamouda, A. (1993): Studies on the bacterial causes of early quail mortalities. Zagazig Vet. J. 21(3): 547-557.
Ahmed, H.A.; El-Hofy, F.I.; Shafik, S.M.; Abd El Rahman, M.A. and El Said, G.A. (2016): Characterization of virulence-associated genes, antimicrobial resistance genes and class 1 Integrons in Salmonella enterica serovar Typhimurium isolates from chicken meat and humans in Egypt. Foodborne Pathog. Dis., 13(6):281-288.
Ameh, J.; Adamu, J. and Ikpa, T. (2011): Experimental infection of chicks with avian Enteropathogenic Escherichia coli (APEC) Serotype O78: K80. African Scientist, 12: (1), 27-32.
Ammar, A.M.; Abdeen, E.E.; Abo-Shama, U.H.; Fekry, E. and Elmahallawy, E.K. (2018): Molecular characterization of virulence and antibiotic resistance genes among Salmonella serovars isolated from broilers in Egypt. Lett. Appl. Microbiol., 68:188-195.
Antunes, P.; Machado, J. and Peixe, L. (2006): Characterization of antimicrobial resistance and class 1 and 2 integrons in Salmonella enterica isolates from different sources in Portugal. J. Antimicrob. Chemother., 58: 297-304.
Ateba, C. and Mbewe, M. (2014): Genotypic Characterization of Escherichia coli O157:H7 isolates from different sources in the North-West Province, South Africa, using Enterobacterial Repetitive Intergenic Consensus PCR Analysis. Int. J. Mol. Sci., 15 (6): 9735-9747.
Barnes, H.J. and Gross, W.B. (1997): Colibacillosis. In: Calnek, B.W.; Barens, H.J.; Beard, C.W.; McDougald, L.R. and Saif, Y.M. (Eds.), Diseases of Poultry, 10th Ed. Iowa State University Press, Ames, Iowa, pp: 131-41.
Bisi-Johnson, M.A.; Obi, C.L.; Vasaikar, S.D.; Baba, K.A. and Hattori, T. (2011): Molecular basis of virulence in clinical isolates of Escherichia coli and Salmonella species from a tertiary hospital in the Eastern Cape, South Africa. Gut Pathog., 2011, 3:9.
Blair, J.; Webber, M.; Baylay, A.; Ogbolu, D. and Piddock, L. (2015): Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 13: 42-51.
Boris, H.; Borka, S.; Gordan, K. and Fani, K. (2012): Antimicrobial resistance and serotyping of Salmonella enterica subsp. enterica isolated from poultry in Croatia. Vet. Arhiv., 82:371-381.
Boroomand, Z.; Jafari, R.; Gharibi, D. and Kazemi, K. (2018): An Investigation into Enterobacteriaceae responsible for early mortality in Japanese quail chicks and their antibiotic susceptibility patterns. Arch. Razi Inst., 73(4): 277-285.
Capuano, F.; Mancusi, A.; Capparelli, R.; Esposito, S. and Proroga, Y.T.  (2013): Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. Foodborne Pathog. Dis., 10 (11): 963-968.
CLSI (2006): Methods for Antimicrobial Broth Dilution and Disk Diffusion Susceptibility Testing of Bacteria Isolated From Aquatic Animals. 2nd Ed. CLSI guideline VET03. Wayne, PA: Clinical and Laboratory Standards Institute.
Da Cunha, R.G. (2009): Quail meat-an undiscovered alternative. World Poult., 25:12-14.
Darwin, K.H. and Miller, V.L. (1999): Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev., 12, 405-428.
Darwish, W.S.; Eldaly, E.; El-Abbasy, M.; Ikenaka, Y.; Nakayama, S. and Ishizuka, M. (2013): Antibiotic residues in food: African scenario. Jap. J. Vet. Res., 61: S13-S22.
Dawes, F.; Kuzevski, A.; Bettelheim, K.; Hornitzky, M.; Djordjevic, S. and Walker, M. (2010): Distribution of class 1 integrons with IS 26-mediated deletions in their 3′-conserved segments in Escherichia coli of human and animal origin. PLoS ONE, 5:e12754.
Dipineto, L.; Russo, T.P.; Gargiulo, A.; Borrelli, L.; De Luca Bossa, L.M.; Santaniello, A.; Menna, P.L. and Fioretti, A. (2014): Prevalence of enteropathogenic bacteria in common quail (Coturnix coturnix). Avian Pathol., 43(6): 498-500.
Dotto, G.; Giacomelli, M.; Grilli, G.; Ferrazzi, V.; Carattoli, A.; Fortini, D. and Piccirillo, A. (2014): High prevalence of oqxAB in Escherichia coli isolates fromdomestic and wild lagomorphs in Italy. Microbial. Drug Resistance, 20 (2): 118-123.
Doublet, B.; Lailler, R.; Meunier, D.; Brisabois, A.; Boyd, D.; Mulvey, M.R.; Chaslus-Dancla, E. and Cloeckaert, A. (2003): Variant Salmonella genomic island 1 antibiotic resistance gene cluster in Salmonella enterica Serovar Albany. Emerg. Infect. Dis., 9 (5): 585-591.
Edwards, P.R. and Ewing, W.H. (1972): Identification of Enterobacteriaceae, 3rd Ed. Burgess Publishing Co., Minneapolis.
Eid, H.I.; Algammal, A.M.; Nasef, S.A.; Elfeil, W.K. and Mansour, G.H. (2016): Genetic variation among avian pathogenic E. coli strains isolated from broiler chickens. Asian J. Anim. Vet. Adv., 11 (6): 350-356.
El Fertas-Aissani, R.; Messai, Y.; Alouache, S. and Bakour, R. (2013): Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathologie Biologie, 61: 209-216.
El-Demerdash, M.Z.; Hanan, M.F.A. and Asmaa, E.A. (2013): Studies on mortalities in baby quail chicks. The 6th Animal Wealth Research Conf. in the Middle East & North Africa, Hurghada, pp. 63 - 76.
El-Sharkawy, H.; Tahoun, A.; El-Gohary, A.A.; El-Abasy, M.; El-Khayat, F.; Gillespie, T.; Kitade, Y.; Hafez, H.M.; Neubauer, H. and El-Adawy, H. (2017): Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathog., 9:8.
Enany, M.E.; Algammal, A.M.; Nasef, S.A.; Abo-Eillil, S.A.M.; Bin-Jumah, M.; Taha, A.E. and Allam, A.A. (2019): The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Expr., 9: 192.
Fang, F.C.; Sandler, N. and Libby, S.J. (2005): Liver abscess caused by magA Klebsiella pneumoniae in North America. J. Clin. Microbiol., 43: 991-992.
Farghaly, E.M.; Samy, A. and Roshdy, H. (2017): Wide prevalence of critically important antibiotic resistance in Egyptian Quail farms with mixed infections. Vet. Scie. Res. Review, 3(1): 17-24.
Firoozeh, F.; Mahluji, Z.; Khorshidi, A. and Zibaei, M. (2019): Molecular characterization of class 1, 2 and 3 integrons in clinical multi-drug resistant Klebsiella pneumoniae isolates. Antimicrob. Resist. Infect. Control, 8:59.
Galán, J.E.; Ginocchio, C. and Costeas, P. (1992): Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J. Bacteriol., 174 (13): 4338-4349.
Grimont, P.A. and Weill, F.X. (2007): Antigenic formulas of the Salmonella Servers, WHO Collaborating Center for reference and research on Salmonella, Paris (9th Ed): 1-166.
Hassan, A.M.; Mohammed, D.A.; Hussein, K.N. and Hussen, S.H. (2017): Comparison among three lines of quail for egg quality characters. Science Journal of University of Zakho, 5 (4): 296-300.
Haynes, R.L. and Smith, T.W. (2003): Hatchery Management Guide for Game Birds and Small Poultry Flock Owners. Online Publication of Mississippi State University.
Hendriksen, R.S.; Vieira, A.R.; Karlsmose, S.; Lo Fo, W.D.; Jensen, A.B.; Wegener, H.C. and Aarestrup, F.M. (2011): Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis., 8: 887-900.
Holt, J.G.; Krieg, N.R.; Sneath, P.H.; Staley, J.T. and Williams, S.T.  (1994): Bergey’s Manual of Determinative Bacteriology. 9th Ed., Lippincott Williams & Wilkins, USA.
Ibrahim, W.A.; Marouf, S.A.; Erfan, A.M.; Nasef, S.A. and El Jakee, J.K. (2019):  The occurrence of disinfectant and antibiotic-resistant genes in Escherichia coli isolated from chickens in Egypt. Vet. World, 12: 141-145.
Ibrahim, W.F. (2019): Isolation, identification and antimicrobial susceptibility testing of recent E. coli serotypes from Japanese Quails reared in Sharkia Governorate, Egypt. Damanhour Journal of Veterinary Sciences, 1(2): 14-17.
Jahantigh, M.; Rashki, A. and Najimi, M. (2013): A study on bacterial flora and antibacterial resistance of yolk sac infection in Japanese quail (Coturnix japonica). Comp. Clin. Pathol., 22: 645–648
Kabir, S.M.L. (2010):  Avian Colibacillosis and Salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int. J. Environ. Res. Public Health, 7: 89-114.
Khoshbakht, R.; Seifi, S.; Karimi, A. and Khosravi, M. (2017): Molecular identification of Campylobacter, Arcobacter, and Salmonella in Japanese quail (Coturnix japonica) reared in farms of Northern Iran. J. Food Qual. Hazards Control, 4: 58-62.
Li, P.; Zhu, T.; Zhou, D.; Lu, W.; Liu, H.; Sun, Z.; Ying, J.; Lu, J.; Lin, X.; Li, K.; Ying, J.; Bao, Q. and Xu, T. (2020): Analysis of resistance to florfenicol and the related mechanism of dissemination in different animal-derived bacteria. Front. Cell. Infect. Microbiol., 10, 369.
Lima, A.M.; de Melo, M.E.; Alves, L.C.; Brayner, F.A. and Lopes, A.C. (2014): Investigation of class 1 integrons in Klebsiella pneumoniae clinical and microbiota isolates belonging to different phylogenetic groups in Recife, State of Pernambuco. Rev. Soc. Bras. Med. Trop., 47: 165–169.
Lu, J.; Zhang, J.; Xu, L.; Liu, Y.; Li, P.; Zhu, T.; Cheng, C.; Lu, S.; Xu, T.; Yi, H.; Li, K.; Zhou, W.; Li, P.; Ni, L. and Bao, Q. (2018): Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China. Antimicrob. Resist. Infect. Control, 7: 127
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T. and Monnet, D.L. (2012): Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard defi­nitions for acquired resistance. Clin. Microbiol. Infect., 18: 268-281.
Mahon, C.R. and Lehman, D.C. (2019): Textbook of Diagnostic Microbiology.
6th Ed., Elsevier Inc., USA.
Mellata, M.; Touchman, J.W. and Curtiss, R. (2009): Full sequence and comparative analysis of the plasmid pAPEC-1 of avian pathogenic E. coli χ7122 (O78:K80:H9). PLoS One, 4 (1): e4232.
Melo, P.D.; Ferreira, L.M.; Filho, A.N.; Zafalon, L.F.; Vicente, H.I. and Souza, V.D. (2013): Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Braz. J. Microbiol., 44: 119-124.
Mosaad, A.A.; El-Shorbagy, M.A. and El-Boraei (2000): Studies on Salmonellosis in quiles. Minufiya Veterinary Medical Journal, 1 (1): 119-128.
Nabil, N.M. and Yonis, A.E. (2019): Isolation of Salmonella characterized by biofilm formation and disinfectant resistance from broiler chickens. A. J. V. S., 62(2): 26-36.
Nikaido, H. (2009): Multidrug resistance in bacteria. Annu. Rev. Biochem., 78:119.
Noguchi, N.; Suwa, J.; Narui, K.; Sasatsu, M.; Ito, T.; Hiramatsu, K. and Song, J. (2005): Susceptibilities to antiseptic agents and distribution of antiseptic-resistance genes qacA/B and smr of methicillin-resistant Staphylococcus aureus isolated in Asia during 1998 and 1999. J. Med. Microbiol., 54 (6): 557-565.
Odumosu, B.T.; Adeniyi, B.A. and Chandra, R. (2013): Analysis of integrons and associated gene cassettes in clinical isolates of multidrug resistant Pseudomonas aeruginosa from Southwest Nigeria. Ann. Clin. Microbiol. Antimicrob.,12:29.
Olivera, S.D.; Rodenbusch, C.R.; Ce, M.C.; Rocha, S.L.S. and Canal, C.W. (2003): Evaluation of selective and non-selective enrichment PCR procedures for Salmonella detection. Lett. Appl. Microbiol., 36: 217-221.
Palanisamy, S. and Bamaiyi, P.H. (2015): Isolation and antibiogram of Salmonella spp. from quails in a farm from Kelantan, Malaysia. J. Vet. Adv., 5 (12):1191-1198.
Rowe-Magnus, D.A.; Guerout, A.M. and Mazel, D. (2002): Bacterial resistance evolution by recruitment of superintegron gene cassettes. Mol. Microbiol., 43:1657-1669.
Roy, P.; Purushothaman, V.; Koteeswaran, A. and Dhillon, A.S. (2006): Isolation, characterization, and antimicrobial drug resistance pattern of Escherichia coli isolated from Japanese quail and their environment. J. Appl. Poult. Res., 15 (3): 442-446.
Saha, O.; Hoque, M.N.; Islam, O.K.; Rahaman, Md. M.; Sultana, M. and Hossain, M.A. (2020): Multidrug-resistant avian pathogenic Escherichia coli strains and association of their virulence genes in Bangladesh. Microorganisms, 8, 1135.
Salehi, M. and Ghanbarpour, R. (2010): Phenotypic and genotypic properties of Escherichia coli isolated from colisepticemic cases of Japanese quail. Trop. Ainm.  Health Prod., 42: 1497-1504.
Santos, T.; Murakami, A.; Fanhani, J. and Oliveira, C. (2011): Production and reproduction of egg-and meat-type quails reared in different group sizes. Revista Brasileira de Ciencia Avicola, 13: 9-14.
Stepanović, S.; Vuković, D.; Veronika, H.; Bonaventura, G.D.; Djukić, S.; Ćirković, I. and Ruzicka, F. (2007): Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS, 115 (8):891-899.
Struve, C.; Bojer, M.; Nielsen, F.M.; Hansen, D.S. and Krogfelt, K.A. (2005): Investigation of the putative virulence gene magA in a worldwide collection of 495 Klebsiella isolates: magA is restricted to the gene cluster of Klebsiella pneumoniae capsule serotype K1. J. Med. Microbiol., 54: 1111-1113.
WHO (2014): Antimicrobial resistance: Global report on surveillance. Geneva, Switzerland.
Yeh, K.; Kurup, A.; Siu, L.K.; Koh, Y.L.;  Fung, C.;  Lin, J.; Chen, T.; Chang, F. and Koh, T. (2007): Capsular Serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumonia liver abscess in Singapore and Taiwan. J. Clin. Microbiol., 45(2): 466–471.
Younis, G.; Awad, A.; El-Gamal, A. and Hosni, R. (2016): Virulence properties and antimicrobial susceptibility profiles of Klebsiella species recovered from clinically diseased broiler chicken. Adv. Anim. Vet. Sci. 4(10):536-542.
Yousef, S.A.; Ammar, A.M. and Ahmed, D.A. (2015): Serological and molecular typing of avian pathogenic E. coli originated from outbreaks of Colibacillosis in chicken flocks. International Journal of Science and Research, 4:2082-2088.
Yusuf, M. S.; El Nabtiti, A.S. and Cui, H. (2016): Effects of NENP vs LELP diets on some laying and reproductive performance parameters of Japanese quail’s hens. J. Ad. Agric. Technol., 3 (2): 132-135.
Zhao, S.; White, D.G.; Ge, B.; Ayers, S.; Friedman, S.; English, L.; Wagner, D.; Gaines, S. and Meng, J. (2001): Identification and characterization of integron-mediated antibiotic resistance among shiga toxin-producing Escherichia coli isolates. Appl. Environ. Microbiol., 67 (4): 1558-1564.