10.21608/avmj.2025.361231.1589

Assiut University web-site: www.aun.edu.eg

EFFECT OF DIETARY ASTRAGALUS HERBS ON POULTRY PRODUCTIVE PERFORMANCE AND HEALTH STATUS BIOMARKERS

GEHAD A. MARAWAN, ISMAIL E. ISMAIL, MOHAMED S. EL-KHOLY AND MAHMOUD ALAGAWANY

Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt

Received: 7 March 2025; Accepted: A August 2025

ABSTRACT

Astragalus, a well-known medicinal herb, has been a fundamental component of traditional Chinese medicine for centuries. Its root is widely processed into various supplement forms, such as liquid extracts, powders, capsules, and teas. The plant's roots contain bioactive compounds, including saponins, polysaccharides, flavonoids, amino acids, glycosides, alkaloids, organic acids, and essential trace elements, which contribute to its therapeutic potential. Traditionally, Astragalus has been used to manage conditions, such as diabetes, nephritis, leukemia, and uterine cancer, as well as for its diuretic and tonic properties. Astragalus polysaccharides (APS), derived from Astragali Radix, play an essential function in immunity and other health benefits. The herb is known to support various physiological functions, including kidney health, digestion, liver function, female reproductive health, cardiovascular performance, respiratory health, and immune defense. Additionally, Astragalus exhibits anti-aging properties, protects against oxidative stress, and helps maintain bone integrity. Its antioxidant-rich compounds, particularly Astragalosides, are essential for respiratory tract protection. This article explores the structural composition and bioactive compounds of Astragalus, emphasizing its potential benefits in poultry health and the underlying mechanisms contributing to its effectiveness.

Keywords: Astragalus, chemical composition, antioxidants, immunostimulants, growth promoter

INTRODUCTION

The use of antibiotics in the poultry industry has been restricted. As a result, the phytogenic feed additives have been increasingly utilized to serve this purpose, as well as for other benefits (Ali *et al.*, 2025). Dietary supplementation of herbs and other ingredients that contain bioactive compo-

Corresponding author: Mahmoud Alagawany E-mail address: dr.mahmoud.alagwany@gmail.com Present address: Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt

nents boost the productivity and health status of poultry (Maznouk, 2025). The perennial plant Astragalus membranaceus (AM), which belongs to the Leguminosae family, is also known as Radix Astragali in Latin and Huangqi in Chinese medicine (Jia et al., 2012). Broadly recognized in traditional Chinese medicine (TCM), AM has long been utilized for its immune-enhancing properties and as a remedy for ailments such as fatigue, anorexia, cardiovascular disorders, diarrhea, and respiratory infections. The dried root of AM is rich in various bioactive constituents, including polysaccharides, astragalosides, flavonoids, saponins, amino acids, and trace

minerals, which contribute to its pharmacological properties (Zhao et al., 2012).

Among its many bioactive components, Astragalus polysaccharides (APS) have been extensively studied for their diverse biological activities. APS exhibit powerful immune-modulating, antioxidant, antiviral, anti-inflammatory, anti-stress, and anti-aging effects (Li and Zhang, 2009). In poultry, dietary APS supplementation at 220 ppm yielded enhancements in both types of adaptive immune (humoral and cellular immunity), as well as offer protection against bacterial, viral, and parasitic infections (Li *et al.*, 2009).

Additionally, polysaccharides of Astragalus contribute to deep immune support by regulating specific immune cell functions, making the herb particularly beneficial under conditions of environmental or physiological stress. Unlike synthetic pharmaceuticals, Astragalus is rarely used as a standalone remedy in TCM but is typically combined with other herbs to enhance its therapeutic effects. Astragalus membranaceus Bunge's roots, Astragali Radix, have liver protective, antioxidant, antiviral, and antihypertensive properties (Shahrajabian et al., 2019). This review delves into the chemical composition of AM (Figure 1), its physiological benefits in poultry, and the mechanisms through which it enhances overall health and disease resistance.

Astragalus membranaceus root Astragalus membranaceus root extract
Figure 1: Astragalus herb (Farag & Alagawany, 2019)

AM structure and biochemical constitution

AM exhibits a consistent chemical profile, primarily composed of bioactive polysaccharides, saponins, and flavonoids, along with phenolic acids, amino acids, and sugars (Zhang et al., 2009a). Its dried roots are particularly rich in polysaccharides and steroidal saponins, known as astragalosides, polysaccharides being the most with significant. These include Astragalan I, II, and III (APS-I, APS-II, APS-III), differing in sugar composition. Astragalin (Kaempferol-3-O-β-Glucoside) is the predominant polysaccharide (Tang & Eisenbrand, 1992). The saponins in AM are categorized into 7 types based on their cycloastragenol backbone (Zhu et al., 2010; Zhang et al., 2011). AM also contains diverse flavonoids, including flavones, flavonols, and isoflavones (Ibrahim et al., 2013), along with pigments such as formononetin and isoliquiritigenin

(Lin *et al.*, 2000). Additional compounds include cyclo-astragenol, betaine, choline, soyasaponin, and β -sitosterol. Furthermore, AM seed oil is abundant in unsaturated fatty acids like oleic and linoleic acids, as well as saturated fatty acids, such as stearic and palmitic acids (Yin *et al.*, 2015).

Mode of action of astragalus Antiviral effect of astragalus

Astragalus polysaccharide has been shown to enhance immune responses and antiviral activity. Zhang *et al.* (2010) reported that APS stimulates CD86 expression, which serves as a ligand for CTLA-4 and CD28. In contrast, Zhuge *et al.* (2012) found that APS suppresses the expression of CTLA-4 and CD28 in swine that is infected with fever virus, while having no impact on TGF-β mRNA levels. Interestingly, APS increased IL-10 mRNA expression in CSFV- and PRRSV-infected pigs. Further research

indicated that APS administration elevated values of TGF- β and IL-2 mRNA. However, when APS was used alongside PRRSV or CSFV infection, it had no effect on TGF- β expression, but led to increased IL-10 mRNA levels and reduced IL-2, CTLA-4, and CD28 transcription. These findings suggest that APS modulates immune responses in PRRSV- or CSFV-infected cells through distinct mechanisms.

APS has also been identified as a potential adjuvant for the foot-and-mouth disease virus (FMDV) vaccine. When administered alongside the vaccine, APS enhances macrophage phagocytic activity, promotes dendritic cell (DC) maturation, stimulates T lymphocyte (LYM) proliferation, upregulates cytokine expression, and boosts antibody production. These immunomodulatory effects suggest that APS could improve the efficacy of other vaccines as well. Given its availability, affordability, and minimal side effects, APS presents itself as an effective vaccine adjuvant (Zhang et al., 2010).

The biological effects of APS extend beyond immune modulation. Studies have examined its influence on productivity, liver and gut health, and antiviral activity in zebrafish. Li et al. (2021) concluded that supplementation with 0.01% APS enhanced gut integrity, antiviral defenses, and growth rates in zebrafish. However, a higher concentration of 0.02% APS posed potential risks to liver health.

A purified component of *Astragalus membranaceus*, known as Astragaloside IV, has demonstrated antiviral properties. Shang *et al.* (2011) found that Astragaloside IV effectively inhibits human adenovirus (HAdV-3) replication in cell cultures and prevents virus-induced apoptosis.

Antioxidant effects of Astragalus

Additionally, Astragalus membranaceus polysaccharides (AMP) have been evaluated as dietary supplements for poultry. Zhang et al. (2013) observed that incorporating 5 g of AMP particles per kg of broilers' feed

enhanced blood antioxidant activity; although no significant impact on growth and feed utilization was noted. Smaller AMP particles exhibited a stronger antioxidant effect, indicating their potential as antioxidant additives for broiler diets.

Further research by Alagawany et al. (2022) highlighted the benefits of injecting broilers' eggs with polysaccharides of AM. The treatment significantly improved antioxidant enzyme activity while reducing oxidative stress markers, with the highest antioxidant response observed at a dosage of 4.5 mg. The glutathione (GSH) concentration was maximized at this dose, while malondialdehyde (MDA) levels decreased compared to control groups. The potent antioxidant properties of AMP are attributed to its diverse bioactive compounds, including polysaccharides, saponins, flavonoids, and glucuronic acid, which exhibit strong free radical scavenging capabilities (Zhang et al., 2013; Cho et al., 2007; El Kenawy et al., 2010). Several studies have linked these compounds to antioxidant and free radical neutralization activities (Li et al., 2009; Zhang et al., 2013; Wang et al., 2010; Attia et al., 2019). The flavonoid content in Astragalus membranaceus exists in both glycosidic and free forms (Ibrahim et al., 2013).

Moreover, Zuo *et al.* (2012) demonstrated that adding AMP in laying hen diets improved antioxidant status and reduced lipid peroxidation of both blood and egg yolks. The optimal AMP supplementation level was between 5 and 10 g/kg of feed.

Effect of astragalus in immunity

Farag & Alagawany (2019) reported that incorporating *Astragalus membranaceus* (AM) into poultry diets has demonstrated significant immunomodulatory effects, both in vivo and in vitro. These benefits arise from its ability to enhance T and B lymphocyte proliferation, stimulate cytokine secretion through macrophage and B cell activation, and strengthen humoral immunity by increasing specific antibody titers.

Qiao et al. (2018) observed that crude Astragalus supplementation influenced gut microbiota composition, leading to a shift in fecal microbial communities. Similarly, El-Shafei & Al-gamal (2013) found that including Astragalus membranaceus root powder (AMRP) in the diet lowered oxidative enzyme levels, boosted blood levels of total protein, albumin, and immunoglobulin G (IgG), and improved the albumin-to-globulin (A/G) ratio, indicating enhanced immune function.

Xi et al. (2014) examined the impacts of Astragalus stems and leaves ultrafined powder (SLASUP) on chickens vaccinated against Newcastle disease (ND). Their findings revealed that **SLASUP** supplementation significantly increased antibody titers and elevated IFN-γ and IL-2 in serum, suggesting a stronger immune response. Further research by Zhang et al. (2018) established the antiviral activity of SLASUP against infectious bronchitis virus (IBV), as it reduced viral replication and downregulated the expression of TNF-α, IL-1β, IL-6, and IL-8.

Guo et al. (2012) also examined the impact of SLASUP on immune function, reporting that it enhanced humoral immunity by increasing serum immunoglobulins Immunocompromised birds. Meanwhile, Fan et al. (2012) explored the consequences of polysaccharide Astragalus liposomes (APSL) on chickens' immunity. Their study showed that APSL promoted both B and T lymphocyte proliferation and worked synergistically with lipopolysaccharides (LPS) to amplify immune responses in NDvaccinated chickens. Wang et al. (2015) investigated the influences of sulphated APS (SAPS) and APS addition on gastrointestinal health and immune regulation. They found compounds these improved morphology by increasing intraepithelial lymphocyte numbers and enhancing jejunal villus height. Additionally, SAPS and APS supplementation reduced plasma nitric oxide (NO) concentrations, suppressed production in T lymphocytes, and lowered

the heterophil-to-lymphocyte (H:L) ratio in LPS-induced inflammatory conditions, highlighting their potential role in mitigating immune stress.

Zhang et al. (2007) emphasized the long-standing use of Astragalus membranaceus in TCM as a potent immunostimulant. Today, it remains widely utilized as a natural immunomodulator, particularly for supporting immune function in chronic degenerative diseases.

Effect of astragalus on performance

Zhang et al. (2013) investigated the impact of AMP on broiler performance when added to the feed at 5 g/kg. Their findings indicated that, under the study's specific feeding conditions, the addition AMP insignificant changes in broiler growth. These results are comparable to earlier one of Wang et al. (2010), who also found that AMP at the same dosage did not enhance growth performance. However, Wang et al. (2010) documented a significant improve in weight gain by supplementing AMP at a higher dose of 10 g/kg over a 42-day feeding period. These results propose that low growth response in birds receiving lower doses of AMP may be attributed to insufficient supplementation, rather the absence of beneficial effects. Previous studies have demonstrated a dose-dependent effect of Astragalus polysaccharides on growth performance (Chen et al., 2003; Zhang et al., 2009b). Furthermore, the particle size of AMP appeared to have no measurable impact on broiler growth, implying that the concentration of AMP in the diet is a more crucial factor than its physical form. Zhang et al. (2009a) observed a similar trend in research involving ginger root processed to comparable particle sizes.

Alagawany et al. (2022) examined the outcomes of injecting broilers' eggs with Astragalus membranaceus. Their study found no changes in birds' live weight, or their weight gain, due to treatment. However, feed consumption patterns varied

depending on the dosage. A quadratic increase in feed intake was observed at 3 mg of Astragalus membranaceus administration during the first 21 days. In contrast, lower dosages (1.5 and 3 mg) directed to a decrease (P=0.004) in feed consumption between days 22 and 35. Over the entire experimental period, feed intake was significantly influenced in both linear and quadratic manners. Additionally, the feed-togain ratio improved significantly when birds received 1.5 mg Astragalus of membranaceus. These findings were supported by El Shafei & Al-gamal (2013), who reported insignificant influence of AM on growth and feed utilization in broilers. Notably, chicks that hatched from eggs injected with 1.5 mg of Astragalus membranaceus exhibited the lowest total feed intake over the experimental period. The absence of strong growth in their study may be attributed to the relatively low levels of Astragalus membranaceus tested. Other research has focused specifically on the effects of Astragalus polysaccharides the primary bioactive compound in Astragalus membranaceus root powder, when used at different concentrations (Chen et al., 2003; Zhang et al., 2009b).

Similarly, the size of *Astragalus membranaceus* polysaccharide particles did not influence broiler performance, reinforcing the idea that dosage plays a more significant role than particle size in determining its effects (Zhang *et al.*, 2009a; Zhang *et al.*, 2013).

Beyond broilers, *Astragalus membranaceus* supplementation has shown benefits for laying hens. Zuo *et al.* (2012) found that incorporating AMP into hen feeds (up to 15 g/kg) resulted in improvements in egg production. Additionally, there was a tendency (P≤0.1) for improved feed efficiency (FE), although average daily feed intake (ADFI) and egg weight remained unaffected over the 10-week study period. These findings suggest that AMP could serve as a natural feed additive capable of

enhancing the reproductive performance of laying hens.

Effect of astragalus in hematobiochemical parameters Alagawany et al.examined the outcomes of injecting broilers' eggs with APS on various hematological indices, including white blood cells (WBCs), LYM, mid-sized cells (MID), granulocytes, blood cells (RBCs), hemoglobin, hematocrit, Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), and platelets. Their findings revealed insignificant quadratic effects on these indices by the administration with APS. Nonetheless, some indicators, such as lymphocytes, mid-sized WBCs, cells. granulocytes, hemoglobin, and hematocrit, showed a linear response administration, suggesting a dose-dependent effect on certain blood components.

A separate study by Han et al. (2024) examined the effects of fermented Astragalus polysaccharides (FAP) in broiler diets. Their results demonstrated that adding 2% FAP to feed significantly increased serum albumin (ALB) and immunoglobulin concentrations. Moreover, supplementation (4%) led to elevated serum glucose (GLU) concentrations at 28 days (P<0.05). The study further revealed that 2% FAP enhanced (P<0.05) IgA levels at 28 days, and both immunoglobulin G and A levels on day 42. However, neither FAP nor unfermented Astragalus polysaccharides (UAP) significantly affected the other blood markers.

Beyond poultry, APS has been widely studied for its metabolic and lipid-regulating properties. Liu et al. (2013) found that APS could alleviate hyperlipidemia in mice by modulating lipid metabolism. Chen et al. (2013) reported that APS significantly reduced serum leptin levels in obese rats that consumed high-fat-included diets, while simultaneously increasing adiponectin concentrations that contribute to regulation of glucose and lipid metabolism. In another study, Tang et al. (2016) showed that APS effectively improved the blood lipid profile of rats with non-alcoholic fatty liver disease. The treatment also mitigated fat accumulation in the liver, indicating a potential role for APS in managing metabolic disorders.

Comparative research by Qianfa *et al.* (2017) assessed the lipid-lowering properties of APS against simvastatin in hyperlipidemic rats. Their findings revealed that APS exhibited a cholesterol-reducing effect similar to that of simvastatin when administered over an extended period. Notably, APS outperformed simvastatin in improving liver enzyme activity, suggesting additional hepatoprotective benefits.

Antibacterial effects of astragalus

Research has highlighted the diverse bioactive compounds present in *Astragalus* species and their potential benefits in poultry production. Abbas & Zayed (2005) identified and isolated seven saponins from *Astragalus suberi L.*, demonstrating their antibacterial properties against a wide variety of bacteria. The isolated compounds exhibited minimum inhibitory concentration levels above 100 ppm, suggesting their potential role as natural antimicrobial agents.

Qiao et al. (2018) explored the effects of fermenting Astragalus and found that the process led to an increase in the bioactive compounds like polysaccharide, that are associated with interactions with intestinal microbiota, which in turn activated enzymes that contributed to a greater count of the Lactobacillus population. The presence of Lactobacillus supports feed utilization complementing efficiency by other beneficial gut microbes (Saito et al., 2003). Flavonoids present in Astragalus play an essential in maintaining the function integrity of gastrointestinal barriers, modulating gut hormone secretion, and influencing microbiota composition (Oteiza et al., 2018). Additionally, gastrointestinal microbiome population can hydrolyze the absorbed saponins, potentially generating

bioactive metabolites that contribute to overall health benefits (Lim et al., 2015). Consequently, broilers fed diets supplemented with fermented Astragalus exhibited improved growth performance, likely due to increased availability bioactive compounds, such polysaccharides, flavonoids, and saponins, along with microbially-generated organic acids. Studies have demonstrated that fermented and unfermented Astragalus can influence the microbial population of broiler feces. Qiao et al. (2018) were the first to report that dietary supplementation with Astragalus modulates the microbial community composition in broilers. The gut microbiota is known to transform herbal compounds into beneficial metabolites, thereby improving overall gut health and microbiota diversity (Xu et al., 2017). It is speculated that Astragalus exhibits a key role against inflammation and oxidation (Kim et al., 2013), that help regulate immunity and could decrease reliance on antibiotics in poultry farming (Kallon et al., 2013). Furthermore, when subjected to fermentation by Lactobacillus, Astragalus produces significant quantities of organic acids which promote the helpful bacteria population while suppressing pathogenic ones, further boosting the intestine health.

A study by Qiao et al. (2022) utilized Principal Coordinate Analysis (PCoA) to examine the impact of different dietary on broiler microbiota treatments composition. The results revealed distinct clustering of microbial communities in control (CON), antibiotic-treated (ANT), -supplemented, Glycyrrhiza **APS** and polysaccharide-supplemented uralensis (GPS) groups. APS and GPS supplementation significantly decreased Bacteroides, Bacteroidetes, Faecalibacterium, Desulfovibrio, and Butyrici-coccus while increasing Firmicutes, Prevotella, Parabacteroides, Ruminococcus. Alistipes. These microbiota shifts correlated improved with broiler performance, including weight gain, feed utilization, immune markers, and intestinal barrier proteins, highlighting the role of these polysaccharides in enhancing gut health and overall growth.

Medicinal uses of astragalus

The dried roots of Astragalus species (Radix Astragali) contain a variety of bioactive compounds known for their protecting impacts on multiple body organs and tissues. These protective properties are particularly evident in diseases associated with oxidative stress (Hong et al., 1992; Shahzad et al., 2016). Astragalus is widely recognized for its role in boosting the body's primary systems, supporting immune energy function, and enhancing metabolism, respiration, and detoxification processes (Liu et al., 2017). Additionally, Astragalus glycyphyllos has been traditionally used as a against hypertension medication and inflammation (Nikolov, 2006). One of the remarkable constituents found most exclusively in the Astragalus genus is cycloastragenol (CA), an aglycone derived from cycloartane-type glycosides. compound is known to extend proliferation of T lymphocytes by enhancing telomerase enzyme activity that plays a crucial role in delaying cell aging (Valenzuela et al., 2009).

Effect of astragalus on fertility

has demonstrated Research that supplementing poultry diets with Astragalus can significantly enhance extracts performance. Zuo et al. (2012) reported that increasing the inclusion of Astragalus membranaceus polysaccharides (AMP) from 5 to 15 g/kg in poultry diets exerted a linear improvement in egg production rate and mass. However, total egg the conversion ratio (feed intake/egg mass) showed a tendency to decrease (P = 0.097), improved feed efficiency. indicating Notably, the increase in egg mass was attributed to a higher egg production rate rather than an increase in egg weight.

Similarly, Alagawany *et al.* (2022) explored the impact of adding *Astragalus membranaceus* in quail breeders' diets during the 8- to 16-week laying period. They

found that different inclusion levels of *Astragalus* offered distinct benefits:

- 2 g/kg diet: Improved laying performance
- 5 g/kg diet: Enhanced hatchability characteristics and increased IgG levels
- 4 g/kg diet: Strengthened eggshell quality
- 3 g/kg diet: Reduced total cholesterol
- 1 g/kg diet: Improved feed conversion ratio

Beyond its impact on egg production, Astragalus extracts also benefit male reproductive health. Wu et al. (2017) demonstrated that APS could enhance testicular function by modulating key enzymatic activities. In their study, 16 genes were found to be upregulated, while 17 were downregulated, indicating significant biological responses at the molecular level. Additionally, Hu (2023) observed that APS supplementation improved the antioxidant capacity of sperm exposed to bisphenol A (BPA), an environmental toxin. This resulted in enhanced sperm capacitation and overall reproductive efficiency, suggesting that APS could mitigate the adverse effects of environmental stressors on fertility.

CONCLUSION

The use of medicinal plants and their bioactive compounds as supplements in poultry diets continues to gain attention due to their antimicrobial, immunomodulatory, and overall health-enhancing properties. The supplementation of poultry feed with Astragalus membranaceus has demonstrated numerous benefits, including improved immune responses, enhanced reproductive performance, and optimized feed efficiency. These effects are mediated by the ability of stimulate lymphocyte Astragalus to proliferation (T and B cells), activate macrophages, and enhance humoral immunity by increasing specific antibody titers. As a result, Astragalus presents itself as a valuable natural alternative to synthetic growth promoters and immune enhancers in poultry farming, offering a sustainable approach to improving production efficiency and bird health.

REFERENCE

- Abbas, F. and Zayed, R. (2005): Bioactive Saponins from Astragalus suberi L. Growing in Yemen. Zeitschrift Für Naturforschung C, 60(11–12), 813–820. https://doi.org/10.1515/znc-2005-11-1201
- Alagawany, M.; Ashour, E.A.; El-Fakhrany, H.H.H.; Ismail, T.A. and Nasr, M. (2022): Early nutrition programming membranaceus with Astragalus polysaccharide: its effect on growth, carcasses, immunity, antioxidants, lipid profile and liver and kidney functions broiler chickens. Animal 362–368. Biotechnology, 33(2),https://doi.org/10.1080/10495398.2021. 2025067
- ALi, G.I.; Tahoon, A.Y.; Naena, Nehal, A.A.; El-Keredy, A.M.S.; Al-Sokary, E.T.; Elbaz, S. and Abou ASA, S. (2025): Cinnamon nano particles (CNPS) as feed additives on rabbit growth performance, immunity, antioxidant capacity, and resistance to Escherichia coli. Assiut Veterinary Medical Journal. 71(184), 608-634. https://doi.org/10.21608/avmj.2025.320 513.1399
- Attia, Y.A.; Hamed, R.S.; Bovera, F.; Al-Harthi, M.A.; Abd El-Hamid, A.E.H.E.; Esposito, L. and Shahba, H.A. (2019): Milk thistle seeds and rosemary leaves as rabbit growth promoters. Animal Science Papers and Reports, 37(3), 277–295.
- Chen, H.L.; Li, D.F.; Chang, B.Y.; Gong, L.M.; Dai, J.G. and Yi, G.F. (2003): Effects of Chinese herbal polysaccharides on the immunity and growth performance of young broilers. Poultry Science, 82(3), 364–370. https://doi.org/10.1093/ps/82.3.364
- Chen, X.H.; Wei, X.J.; Wang, T.; Yin, Q.F.; Cao, M. and Weng, X.G. (2013): Effects of Astragalus Polysaccharide on

- Insulin sensitivity and adipocyte Factor in Rats. *J. Xinxiang Med. Univ*, *30*, 356–359. https://doi.org/doi: CNKI: SUN:XXYX.0.2013-05-
- Cho, W.C.S. and Leung, K.N. (2007): In vitro and in vivo immunomodulating and immunorestorative effects of Astragalus membranaceus. Journal of Ethnopharmacology, 113(1), 132–141. https://doi.org/10.1016/j.jep.2007.05.02
- El-Kenawy, A.E.-M. (2010): Investigating the Protective Effects of Astragalus Membranaceus on Nephrotoxicity in Cyclosporine A-treated Rats. *Kidney*, 19(3), 119–125. https://doi.org/10.1007/s00596-009-0136-8
- El-shafei, A.A. and Al-gamal, M.A. (2013): Influence of Different Levels of Astragalus Root Powder in Broiler Chick Diets on the. J Appl Sci Res, 9(3), 2104–2118.
- Fan, Y.; Hu, Y.; Wang, D.; Liu, J.; Zhang, J.; Zhao, X.; Liu, X.; Liu, C.; Yuan, J. and Ruan, S. (2012): Effects of Astragalus polysaccharide liposome on lymphocyte proliferation in vitro and adjuvanticity in vivo. Carbohydrate Polymers, 88(1), 68–74. https://doi.org/10.1016/j.carbpol.2011.11.067
- Farag, M.R. and Alagawany, M. (2019): The role of Astragalus membranaceus as immunomodulator in poultry. World's Poultry Science Journal, 75(1), 43–54. https://doi.org/10.1017/S004393391800 0739
- Guo, L.; Liu, J.; Hu, Y.; Wang, D.; Li, Z.; Zhang, J.; Qin, T.; Liu, X.; Liu, C.; Zhao, X.; Fan, Y.P.; Han, G. and T.L. Nguyen, *(2012):* Astragalus polysaccharide and sulfated epimedium polysaccharide synergistically resist the immunosuppression. Carbohydrate 1055-1060. Polymers, 90(2),https://doi.org/10.1016/j.carbpol.2012.0 6.042
- Han, S.; Xu, G.; Zhang, K.; Ahmad, S.; Wang, L.; Chen, F.; Liu, J.; Gu, X.; Li, J. and Zhang, J. (2024): Fermented Astragalus Powder, a New Potential Feed Additive for Broilers to Improve

- the Growth Performance and Health. *Animals*, 14(11), 1628. https://doi.org/10.3390/ani14111628
- Hong, C.Y.; Ku, J., and Wu, P. (1992):
 Astragalus membranaceus stimulates human sperm motility in vitro. The American Journal of Chinese Medicine, 20(3–4), 289–294. https://doi.org/10.1142/s0192415x92000308
- Hu, Q. (2023): Effects of Astragalus polysaccharide to boar sperm on bisphenol A exposure. Reproduction in Domestic Animals, 58(5), 662–669. https://doi.org/10.1111/rda.14335
- Ibrahim, L.F.; Marzouk, M.M.; Hussein, S.R.; Kawashty, S.A.; Mahmoud, K. and Saleh, N.A.M. (2013): Flavonoid constituents and biological screening of Astragalus bombycinus Boiss. Natural Product Research, 27(4–5), 386–393. https://doi.org/10.1080/14786419.2012. 701213
- Jia, R.; Cao, L.; Xu, P.; Jeney, G. and Yin, G. (2012): In vitro and in vivo hepatoprotective and antioxidant effects of Astragalus polysaccharides against carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio). Fish Physiology and Biochemistry, 38(3), 871–881. https://doi.org/10.1007/s10695-011-9575-z
- Kallon, S.; Li, X.; Ji, J.; Chen, C.; Xi, Q.; Chang, S.; Xue, C.; Ma, J.; Xie, Q. and Zhang, Y. (2013): Astragalus polysaccharide enhances immunity and inhibits H9N2 avian influenza virus in vitro and in vivo. Journal of Animal Science and Biotechnology, 4(1), 22–33. https://doi.org/10.1186/2049-1891-4-22
- Kim, J.H.; Kim, M.H.; Yang, G.; Huh, Y.; Kim, S.H. and Yang, W.M. (2013): Effects of topical application of Astragalus membranaceus on allergic dermatitis. Immunopharmacology and Immunotoxicology, 35(1), 151–156. https://doi.org/10.3109/08923973.2012. 733708
- Li, B. and Zhang, Y. (2009): Physiological function and application in prologue

- production of Astragalus. *Animal Breeding and Feed*, 1, 4344.
- Li, S.P.; Zhao, X.J. and Wang, J.Y. (2009): Synergy of Astragalus polysaccharides and probiotics (Lactobacillus and Bacillus cereus) on immunity and intestinal microbiota in chicks. *Poultry Science*, 88(3), 519–525. https://doi.org/10.3382/ps.2008-00365
- Li, Y.; Ran, C.; Wei, K.; Xie, Y.; Xie, M.; Zhou, W.; Yang, Y.; Zhang, Z.; LV, H.; Ma, X.; and Zhou, Z. (2021): The effect of Astragalus polysaccharide on growth, gut and liver health, and antiviral immunity of zebrafish. Aquaculture, 540, 736677. https://doi.org/10.1016/j.aquaculture.20 21.736677
- Lim, S.M.; Jeong, J.J.; Kang, G.D.; Kim, K.A.; Choi, H.S. and Kim, D.H. (2015): Timosaponin AIII and its metabolite sarsasapogenin ameliorate colitis in mice by inhibiting NF-κB and MAPK activation and restoring Th17/Treg cell balance. International Immunopharmacology, 25(2), 493–503. https://doi.org/10.1016/j.intimp.2015.02.016
- Lin, L.Z.; He, X.G. and Llindenmaier, M. (2000): Liquidchromatography-electrospray ionization mass spectrometrystudy of the lavonoids of the roots of Astragalus mongholicusand A. membranaceus. Journal of Chromatography A, 876, 87–95.
- Liu, M.; Qin, J.; Hao, Y.; Liu, M.; Luo, J.; Luo, T. and Wei, L. (2013): Astragalus polysaccharide suppresses skeletal muscle myostatin expression in diabetes: Involvement of ROS-ERK and NF-κB pathways. Oxidative Medicine and Cellular Longevity, 1–10, 782497. https://doi.org/10.1155/ 2013/ 782497
- Liu, P.; Zhao, H. and Luo, Y. (2017): Antiaging implications of AstragalusMembranaceus (Huangqi): Awell-known Chinese tonic. Aging and Disease, 8(6), 868–886.
- Maznouk, H.J. (2025): Performance, Egg Quality, and Some Serum Parameters

- of Layers Fed Different Parts of Stinging Nettle (Uritica Dioica). *Assiut Veterinary Medical Journal (Egypt)*, 71(184), 289–300. https://doi.org/10.21608/avmj.2024.314387.1361
- Nikolov, S. (2006): Astragalus glycyphyllo s (S. Nikolov, S. BAS, and Sofia (eds.); pp. 317–318).
- Oteiza, P.I.; Fraga, C.G.; Mills, D.A. and Taft, D.H. (2018): Flavonoids and the gastrointestinal tract: Local and systemic effects. Molecular Aspects of Medicine, 61, 41–49. https://doi.org/10.1016/j.mam.2018.01.001
- Qianfa, Y.; Simeng, T.; Siyu, C. and Zemin, Y. (2017): Dynamic comparative study on the therapeutic effect of astragalus polysaccharide and Simvastatin in rats with hyperlipidemia. China Med. Herald, 14(23), 8–12.
- Qiao, H.; Song, Y.; Shi, H. and Bian, C. (2018): Fermented astragalus in diet altered the composition of fecal microbiota in broiler chickens. AMB Express, 8(1), 1–12. https://doi.org/10.1186/s13568-018-0682-4
- Qiao, Y.; Liu, C.; Guo, Y.; Zhang, W.; Guo, W.; Oleksandr, K. and Wang, Z. (2022): Polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota. Poultry Science, 101(7), 101905. https://doi.org/10.1016/j.psj. 2022.101905
- Saito, K.; Kawamura, Y. and Oda, Y. (2003):
 Role of the pectinolytic enzyme in the lactic acid fermentation of potato pulp by Rhizopus oryzae. Journal of Industrial Microbiology and Biotechnology, 30(7), 440–444. https://doi.org/10.1007/s10295-003-0071-z
- Shahrajabian, M.H.; Sun, W. and Cheng, Q. (2019): Astragalus, an Ancient Medicinal Root in Traditional Chinese Medicine, a Gift from Silk Road. International Journal of Agriculture and Biological Sciences-ISSN, 3(3), 27–38.

- Shahzad, M.; Shabbir, A.; Wojcikowski, K.; Wohlmuth, H.C. and Gobe, G. (2016): The Antioxidant Effects of Radix Astragali (Astragalus membranaceus and Related Species) in Protecting Tissues from Injury and Disease. Current Drug Targets, 17(12), 1331–1340. https://doi.org/10.2174/1389450116666150907104742
- Shang, L.; Qu, Z.; Sun, L.; Wang, Y.; Liu, F.; Wang, S.; Gao, H. and Jiang, F. (2011): Astragaloside IV inhibits adenovirus replication and apoptosis in A549 cells in vitro. Journal of Pharmacy and Pharmacology, 63(5), 688–694. https://doi.org/10.1111/j.2042-7158.2011.01258.x
- Tang, J.Y.; Liu, Z.H.; Yang, H. and Zhou, D.S. (2016): Effect of Astragalus Polysaccharide on Blood lipids in Rats with Non-alcoholic Fatty liver. Heilongjiang Anim. Sci. Vet. Med, 18, 171–172.
 - https://doi.org/10.13881/j.cnki.hljxmsy.
- Tang, W. and Eisenbrand, G. (1992): Chinese Drugs of Plant Origin. Chinese Drugs of Plant Origin, 191–197. https://doi.org/10.1007/978-3-642-73739-8
- Valenzuela, H.F.; Fuller, T.; Edwards, J.; Finger, D. and Molgora, B. (2009): Cycloastragenol extends T cell proliferation by increasing telomerase activity (90.30). The Journal of Immunology, 182(1_Supplement), 90.30-90.30.
 - https://doi.org/10.4049/jimmunol.182.s upp.90.30
- Wang, H.F.; Yang, W.R.; Yang, H.W.; Wang, Y.; Yang, Z.B.; Jiang, S.Z. and Zhang, G.G. (2010): Effects of Astragalus membranaceus on growth performance, carcass characteristics, and antioxidant status of broiler chickens. Acta Agriculturae Scand Section A, 60(3), 151–158.
- Wang, X.; Li, Y.; Shen, J.; Wang, S.; Yao, J. and Yang, X. (2015): Effect of Astragalus polysaccharide and its sulfated derivative on growth performance and immune condition of

- lipopolysaccharide-treated broilers. *International Journal of Biological Macromolecules*, 76, 188–194. https://doi.org/10.1016/j.ijbiomac.2015. 02.040
- Wu, S.; Li, Y.; Chen, S.; Liang, S.; Ren, X.; Guo, W.; Sun, Q. and Yang, X. (2017): Effect of dietary Astragalus Polysaccharide supplements on testicular piRNA expression profiles of breeding cocks. International Journal of Biological Macromolecules, 103(1), 957–964. https://doi.org/10.1016/j.ijbiomac.2017.05.122
- Xi, N.; Kang, J.; Hao, L.; Li, R.; Bao, Y. and Shi, W. (2014): Effects of ultrafine powder of the stem and leaf of Astragalus on immunity in chickens. Italian Journal of Animal Science, 13(1), 142–146. https://doi.org/10.4081/ijas.2014.3022
- Xu, J.; Chen, H.B. and Li, S.L. (2017): Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Medicinal Research Reviews, 37(5), 1140–1185.

https://doi.org/10.1002/med.21431

- Yin, G.; Tang, D.; Dai, J.; Liu, M.; Wu, M.; Sun, Y.; Yang, Z.; Hoffman, R.M.; Li, L.; Zhang, S. and Guo, X. (2015): Combination efficacy of Astragalus membranaceus and Curcuma wenyujin at different stages of tumor progression in an imageable orthotopic nude mouse model of metastatic human ovarian cancer expressing red fluorescent protein. Anticancer Research, 35(6), 3193–3207.
- Zhang, G.G.; Yang, Z.B.; Wang, Y. and (2013): Yang, W.R.Effects of membranaceus astragalus root processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens1. Poultry Science, 92(1), 178https://doi.org/10.3382/ps.2012-183. 02432
- Zhang, J.; Xie, X.; Li, C. and Fu, P. (2009a): Systematic review of the renal protective effect of Astragalus

- membranaceus (root) on diabetic nephropathy in animal models. *Journal of Ethnopharmacology*, *126*(2), 189–196. https://doi.org/10.1016/j.jep. 2009.08.046
- Zhang, L.J.; Liu, H.K.; Hsiao, P.C.; Kuo, L.M.Y.; Lee, I.J.; Wu, T.S.; Chiou, W.F. and Kuo, Y.H. (2011): New isoflavonoid glycosides and related constituents from astragali radix (astragalus membranaceus) and their inhibitory activity on nitric oxide production. Journal of Agricultural and Food Chemistry, 59(4), 1131–1137. https://doi.org/10.1021/jf103610j
- Zhang, N.; Li, J.; Hu, Y.; Cheng, G.; Zhu, X., Liu, F.; Zhang, Y.; Liu, Z. and Xu, J. (2010): Effects of astragalus polysaccharide on the immune response to foot-and-mouth disease vaccine in mice. Carbohydrate Polymers, 82(3), 680–686. https://doi.org/10.1016/j.carbpol.2010.05.030
- Zhang, P.; Liu, X.; Liu, H.; Wang, W.; Liu, X.; Li, X. and Wu, X. (2018):

 Astragalus polysaccharides inhibit avian infectious bronchitis virus infection by regulating viral replication.

 Microbial Pathogenesis, 114, 124–128. https://doi.org/10.1016/j.micpath.2017. 11.026
- Zhang, X.; Sun, Y.G.; Cheng, M.C.; Wang, Y.Q.; Xiao, H.B. and Liang, X.M. (2007): Simultaneous quantification of three isoflavonoid glycosides in rabbit plasma after oral administration of Astragalus mongholicus extract by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Analytica Chimica Acta, 602(2). 252-258. https://doi.org/ 10.1016/j.aca.2007.09.033
- Zhang, Y.; Li, B. and Zhu, Y.J. (2009b): Effect of Astragalus poly-saccharides on growth and small intestine mucosal morphology of broilers. J Shenyang Agric Univ, 40, 453–457.
- Zhao, C.T.; Wang, E.T.; Zhang, Y.M.; Chen, W.F.; Sui, X.H.; Chen, W.X.; Liu, H.C.; and Zhang, X.X. (2012):

Mesorhizobium silamurunense sp. nov., isolated from root nodules of astragalus species. *International Journal of Systematic and Evolutionary Microbiology*, 62(9), 2180–2186. https://doi.org/10.1099/ijs.0.031229-0

Zhu, W.; Higgs, B.W.; Morehouse, C.; Streicher, K.; Ambrose, C.S.; Woo, J.; Kemble, G.W.; Jallal, B. and Yao, Y. (2010): A whole genome transcriptional analysis of the early immune response induced by live attenuated and inactivated influenza vaccines in young children. Vaccine, 28(16), 2865–2876. https://doi.org/10.1016/j.vaccine.2010.01.060

Zhuge, Z.Y.; Zhu, Y.H.; Liu, P.Q.; Yan, X.D.; Yue, Y.; Weng, X.G.; Zhang, R. and Wang, J.F. (2012): Effects of astragalus polysaccharide on immune responses of porcine PBMC stimulated with PRRSV or CSFV. PLoS ONE, 7(1), 29320. https://doi.org/10.1371/journal.pone.00 29320

Zuo, Z.Y.; Yang, W.R.; Wang, Y.; Yang, Z.B.; Jiang, S.Z. and Zhang, G.G. (2012): Effects of astragalus membranaceus on laying performance and antioxidant status of laying hens. Journal of Applied Poultry Research, 21(2), 243–250. https://doi.org/10.3382/japr.2011-00351

تأثير أعشاب الأستراجلس كإضافة علفية على الأداء الإنتاجي ومؤشرات الحالة الصحية في الدواجن

جهاد مروان ، إسماعيل السيد إسماعيل ، محمد سليمان الخولى ، محمود محمد العجواني

Email: dr.mahmoud.alagwany@gmail.com Assiut University web-site: www.aun.edu.eg

تُعد عشبة الأستراجلس مكونًا أساسيًا في الطب التقليدي الصيني منذ قرون لما له من خصائص طبية معروفة. يُستخدم جذر الأستراجلس بشكل واسع في تصنيع مكملات غذائية متعددة الأشكال، مثل المستخلصات السائلة، والمساحيق، والكبسولات، والشاي. تحتوي جذور هذه النبتة على مركبات نشطة بيولوجيًا، بما في ذلك السابونين، والسكريات المتعددة، والفلافونويدات، والأحماض الأمينية، والجليكوسيدات، والقلويدات، والأحماض العضوية، وعناصر أثرية أساسية، والتي تساهم جميعها في فوائدها العلاجية. من الناحية التقليدية تم استخدم الأستراجلس لعلاج امراض السكري، والتهاب الكلى، وسرطان الدم، وسرطان الرحم، بالإضافة إلى خصائصه المدرة للبول والمنشطة. تُعد السكريات المتعددة المستخلصة من جذر الأستراجلس ذات أهمية كبيرة لدعم المناعة والفوائد الصحية الأخرى. يُعرف عن هذه العشبة دعمها المجموعة من الوظائف الفسيولوجية، بما في ذلك صحة الكلى، والهضم، ووظائف الكبد، وصحة الجهاز التناسلي الأنثوي، والأداء القلبي الوعائي، وصحة الجهاز التنفسي والمناعي. علاوة على ذلك، يُظهر الأستراجلس خصائص مضادة للشيخوخة، ويحمي من الإجهاد التأكسدي، ويساعد في الحفاظ على سلامة العظام. تُعتبر مركباته غنية بمضادات الأكسدة، خاصة الأستراجالوسيدات، ضرورية لحماية الجهاز التنفسي. تستعرض هذه الدراسة التركيب البنائي والمركبات النشطة خاصة الأستراجالوسيدات، مع التركيز على فوائده المحتملة لصحة الدواجن والآليات الكامنة وراء فعاليته.