10.21608/avmj.2025.377595.1669

Assiut University web-site: www.aun.edu.eg

UTILITY OF 3-HYDROXY-2-(2-METHOXYPHENYL)-4H-CHROMEN-4-ONE AS ANTIOXIDANT FEED SUPPLEMENT ON MILK PRODUCTION AND GROWTH RATE IN GOATS

MANAR R.A. SOLIMAN *1, MARWA S. SALEM 2, FATEN ABOU-AMMOU 1 AND HASSAN M. F. MADKOUR 2

¹ Sheep and Goat Research Department, Animal Production Research Institute, Agricultural Research Centre, Dokki, Giza, Egypt.

Received: 5 May 2025; Accepted: 30 Jun 2025

ABSTRACT

The study aimed to investigate the effect of 3-Hydroxy-2-(2-methoxyphenyl)-4H-chromen-4-one / (2'-methoxy flavonol, 4) on oxidative stresses, milk production and growth rate of Zaraibi goats, compared to the standard antioxidant vitamin C. The 2'-methoxy flavonol (4) has been synthesized throughout the oxidative cyclization of 1-(2'-Hydroxyphenyl)-3-(2-methoxyphenyl) prop-2-en-1-one 3, the structure of 3 & 4 have been characterized by melting points (mp), and the spectroscopic tools. The total antioxidant capacity (TAC) of compounds 3 & 4 has been measured using the phosphomolybdenum assay.

Twenty-four pregnant Zaraibi goats were randomly distributed into three groups. The control group (CG) received the basal diet (BD), the flavonoid group (FG) received the BD plus (60 mg/kg body weight/d) of 4, and the ascorbic acid group (AAG) received the BD plus (60 mg/kg body weight/d) of vitamin C.

The results indicated that the two synthesized compounds 3 & 4 have good antioxidant capacity. The daily milk yield (DMY), milk fat content, and the average daily weight gain (DWG) of goats' kids of FG increased significantly compared to the CG and AAG groups. The results also indicated that all blood parameters were within the normal range. In conclusion, the use of the 2'-methoxy flavonol 4 as antioxidant feed supplement in the diet of pregnant Zaraibi goats can reduce the oxidative stresses, increase the daily milk yield, the milk fat percentage, and increase the average daily weight gain of goats' kids without any adverse effect on the nutritional and physiological status of animals.

Keywords: 2'-methoxy flavonol; Zaraibi goats; oxidative stress; milk production; kids' growth performance.

INTRODUCTION

The synthetic flavonol 3-Hydroxy-2-(2-methoxyphenyl)-4H-chromen-4-one /

Corresponding author: MANAR R.A. SOLIMAN E-mail address: manarsoliman p@sci.asu.edu.eg
Present address: Sheep and Goat Research
Department, Animal Production Research Institute,
Agricultural Research Centre, Dokki, Giza, Egypt.

2'-methoxy flavonol 4 is a 2-arylbenzo-pyrane (chromone) derivative Grotewold (2006). In general, the family of chromones can be easily synthesized throughout oxidative cyclization of 2'-hydroxychalcones (Prakash *et al.*, 2008; Sheng *et al.*, 2009). They are widely distributed in vegetables, fruits, seeds, nuts, and beverages. Flavonoids possess a

² Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

wide spectrum of pharmaceutical and biological activities, including antioxidant (Murti *et al.*, 2013), antimicrobial (Dofe *et al.*, 2017), anti-inflammatory (Li *et al.*, 2023), and antifungal activities (Prakash *et al.*, 2008).

It was found that using flavonoids as feed additives to ruminant animals' diet increased the feed intake, enhanced the digestion of nutrients, the digestion of crude fibers and cellulose degradation (Li et al., 2017), reduced methane gas emission to a metabolic rate (Oskoueian et al., 2013), increased the daily weight gain and growth rate of kids (Muqier et al., 2017; Yaseen et al., 2022).

During pregnancy, parturition, suckling, and lactation periods, ruminant, especially dairy Zaraibi goats, expose to high oxidative stress (Huang *et al.*, 2021) because of the increased nutrition and energy demand for foetus growth and development. Oxidative stress is implicated in almost all pregnancy related problems (Hussain *et al.*, 2021), which adversely affects the reproductive and productive performance of the herd.

Moreover, increasing the milk yield of Zaraibi goats and enhancing the milk composition to produce a robust kid at weaning is an important issue. Due to the abilities of antioxidants to reduce the oxidative stress and overcome pregnancy, parturition, and lactation related problems, and enhancing milk yield antioxidants composition, considered essential feed supplements during these critical periods (Mistry & Williams 2011; Sebastiani et al., 2022).

The benefits of flavonoids, in addition to the easy and the economical efficient synthesis of this family of chromones and as a continuation of our on-going research in the synthesis of biologically active heterocyclic compounds (Ali et al., 2023; El-Kady et al., 2016; Halim et al., 2024; Ismail et al., 2021; Khlosy et al., 2020; Madkour et al., 2018a; Madkour et al., 2018b; Mohamed et al., 2020; Salem et al., 2020; Salem & Errayes, 2016) encourage us to investigate the effects of the 2'-methoxy flavonol 4 on the oxidative stress, milk production, milk composition, growth rate of goats' kids, and some blood parameters of Zaraibi goats.

Scheme 1: Synthesis of 1-(2'-Hydroxyphenyl)-3-(2-methoxyphenyl) prop-2-en-1-one **3** and 3-Hydroxy-2-(2-methoxyphenyl)-4H-chromen-4-one **4**

MATERIALS AND METHODS

Chemistry

Gallenkamp electric melting point device has been used to measure the melting points which remain uncorrected. The infrared spectrophotometer Pye Unicam SP-3-300 has been used to record the infrared (IR) spectra using KBr disks. ¹H-NMR spectra were obtained at 300 MHz

on a Varian Mercury 300BB spectrophotometer using tetramethyl silane (TMS) as internal standard in deuterated dimethyl sulfoxide DMSO and the chemical shift (δ) were reported in ppm and the coupling constant (J) in Hertz. Thin layer chromatography (TLC) has been used to check the progress of reactions using Merk Kiasel gel 60 F254 aluminium packed plates and spots were

visualized under the UV irradiation at 254-365 nm. The spectroscopic analyses have been implemented at the Micro Analytical Centre, Cairo University, Giza, Egypt.

Synthesis of the 2'-hydroxychalcone 3 Mixture of 2'-hydroxyacetophenone 1 (10 mmol, 1.2 ml), o-anisaldehyde 2 (10 mmol, 1.2 ml), and Ba (OH)₂ (10 mmol, 3.15 g) in MeOH (30 mL) was stirred for 12 hr (overnight) at 40°C (Chiruta et al., 2012). Methanol was distilled off and the residue was diluted with H2O, neutralized with HCl (1.0 N), collected with filtration, and washed with water (scheme 1). The solid product was recrystallized from petroleum ether to obtain 1-(2'-Hydroxyphenyl)-3-(2-methoxyphenyl) prop-2-en-1-one 3 as yellow crystals, in 98% yield, mp 111-111.5°C (Lit. mp 101-103°C) (Kralj et al., 2013). IR (KBr) v (cm⁻¹): 3432 (OH), 3072, 3021 (CHaromatic), 2962, 2925 (CH-aliphatic), 1639 (C=O), 1576 (C=C).¹HNMR (300) MHz, DMSO- d_6): δ 12.51 (s, 1H, OH, exchangeable with D₂O), 8.20 - 8.13 (d, 2H, olefinic, J=21.0 Hz), 8.00 - 6.98 (m, 8H, Ar-H), 3.91 (s, 3H, OCH₃).

Synthesis of the 2'-methoxy flavonol 4

To a well stirred and cold 0 °C solution of 3 (10 mmol, 2.54 g) in methanol (50 mL), NaOH (20 mL, 10% w/v) was added, followed by H₂O₂ (12 mL, 30%) dropwise. The reaction mixture was stirred for 3hr at 0 °C, then the ice bath was left in place, but stirring was continued overnight (Chiruta et al., 2012; Shen et al., 2017). The reaction mixture was poured into crushed ice and neutralized with (2M) HCl. The formed solid product was filtered off, washed with water and recrystallized from ethanol to obtain the 3-hydroxy-2-(2methoxyphenyl)-4H-chromen-4-one 4 as pale-yellow crystals in 53.8% yield, mp 199-201 °C (Lit. mp 192-194 °C) (Frimayanti et al., 2023) (scheme 1). IR (KBr) v (cm⁻¹): 3289 (OH), 3066 (CHaromatic), 2921 (CH-aliphatic), 1614 (C= O). 1 HNMR (300 MHz, DMSO- d_{6}): δ 8.88

(s, 1H, OH, exchangeable with D₂O), 8.16-7.05 (m, 8H, Ar-H), 3.79 (s, 3H, OCH₃). MS *m/z* (%): 268 (M · + , 100.0), 237 (26.0), 121 (48.4), 77 (4.1).

In vitro determination of the Total Antioxidant Capacity (TAC) of the synthesized compounds

The measurements of total antioxidant capacity (TAC) of the synthesized 2'hydroxychalcone and 2'-methoxy 3 flavonol 4 have been implemented in the laboratory medicinal chemistry, of Bilharz Theodor Research Institute, Ministry of Health and Population, Giza, UV-Vis Egypt. Using the spectrophotometer Spectronic 601 (Milton Roy, USA), the antioxidant capacity of each compound has been measured according to the phosphomolybdenum assay, with ascorbic acid as a standard antioxidant (Prieto et al., 1999). In phosphomolybdenum assay reduction of Mo (VI) to Mo (V) takes place by the sample analyze to form a green complex of phosphate=Mo (V) with the maximal absorption at 695 nm in acidic medium. The procedure of the phosphomolybdenum assay has been described previously in details (Ghareeb et al., 2018a; Ghareeb et al., 2018b; Ghareeb et al., 2018c; Sobeh et al., 2018). The total antioxidant capacity has been expressed as the number of ascorbic acid equivalent (AAE).

Animal production Animals' management and Feeding

The experiment was carried out at Sakha experimental station, Animal Production Research Institute, Kafer El-sheikh governorate, Egypt. Twenty-four pregnant Zaraibi goats (average body weight: 30.2 ± 0.65 Kg, at the age of 2-3 years, and in the first parity) at the late stage of gestation period (last month of pregnancy), were randomly distributed into three groups (8 does in each group) and kept in collective pens. Does in the control group CG fed the basal ration (BR) (70% CFM + 30 % green)berseem) according to the feeding system of the experimental station, does in the flavonoid group FG received the BR plus (60 mg/Kg body weight/day) of the 2'-methoxy flavonol 4, while does in vitamin C (Ascorbic acid) group AAG received the BR plus (60 mg/Kg body weight/day) of vitamin C. Doses were administered orally as pills once daily at 9.00 am. All does in the three groups were free to drink water and given the NRC feed requirements (NRC, 2007) for pregnant and lactating goats. The experiment lasted 90 days, from the last month of pregnancy till the end of the suckling period.

Blood Sampling and analysis

5 mL blood samples have been withdrawn from the jugular veins on days 0, 30, 60, and 90 of supplementation. Blood samples were centrifuged at 3000 r.p.m. for 15 min., serum was collected in dry and clean vials and stored at -20 °C for further analysis.

Blood serum was analyzed colorimetrically by commercial kits for total protein (TP), albumin, creatinine, blood urea nitrogen (BUN) concentrations, and for Alanine amino transferase (ALT) and Aspartate amino transferase (AST) activities.

Serum was analyzed also for free radicals / lipid peroxidation represented by malondialdehyde (MDA) (Ohkawa *et al.*, 1975) and antioxidants represented by the total antioxidant capacity (TAC) (Koracevic *et al.*, 2001).

Milk sampling and analysis

Milk yield was individually measured once weekly and recorded. The measurements of the milk yields started a week after kidding till the 8th week of suckling period. Milk samples (100 mL) were collected biweekly at W₂, W₄ and W₆ of the suckling period and analyzed for milk fat, protein, lactose, total solids (TS), and solids-not-fats (SNF) % using the Lacto-scan apparatus SLP (Bulgaria). For determination of milk somatic cell counts (SCC) milk samples were collected at the middle

of the experimental time (on 45th day) and analyzed using the somatic cell counter Nucleocounter SCC-100 (Chemo metric Nucleocounter family, Denmark).

Kids' performance

All does in the three groups labored normally. Kids were weighed at birth (BW), then at two months of age to determine the weaning weight (WW), and the daily weight gain (DWG) was calculated.

Statistical analysis

All data of total antioxidant capacity (TAC) of the synthesized compounds were presented as mean \pm SD using SPSS 13.0 program. The statistical package SAS (SAS, 2002) was utilized to test the significance of the studied fixed effects; treatment, time of measurements, and the interaction between them on milk yield, milk composition, somatic cells count, serum TAC, MDA, and blood serum parameters using the following model.

$$X_{ijk} = \mu + N_i + T_j + (N * T)_{ij} + e_{ijk}$$

Where:

 X_{ijk} = the measurements of milk (yield, components, and somatic cell counts) and blood serum (parameters, TAC, and MDA) that have been measured by i^{th} treatment and j^{th} time of measurement,

 μ = population mean,

 N_i = the fixed effect of ith treatment where i = from 1 to 3, where 1 = (control), 2 = (60 mg/kg of body weight/d of 2'-methoxy favonol 4), and 3 = (60 mg/kg of body weight/d of vitamin C),

 T_j = the fixed effect of j^{th} time of measurements where j = from 1 to 4, where 1= (zero time), 2 = $(30^{th}$ day of supplementation), 3 = $(60^{th}$ day of supplementation), and 4 = $(90^{th}$ day of supplementation),

 $(N*T)_{ij}$ = the effect of interaction between N_i and T_i , and

 e_{ijk} = the effect of random error.

RESULTS

Chemistry

Clasien-Schmidt condensation reaction has used to synthesize the hydroxychalcone 3 via condensation between the 2'-hydroxyacetophenone 1 and o-anisaldehyde under 2 conditions. The 2'-hydroxychalcones 3 has been obtained in pure form in 98% yield, and gives a positive color test with FeCl₃ solution, which indicates the presence of the free phenolic hydroxyl group. The synthesis of the 2'-methoxy flavonol 4 has been carried out successfully via Algar-Flynn-Oyamada reaction, which involves the oxidative cyclization of the 2'hydroxychalcone by hydrogen peroxide H₂O₂ in the presence of sodium hydroxide solution. The 2'-methoxy flavonol 4 was obtained in 53.8 % yield. The qualitative analysis for 4 indicates the presence of the free phenolic hydroxyl group. The purity of the synthesized compounds was established by TLC and melting points. Structures of 3 and 4 have been confirmed on the basis of the spectral data (IR, ¹H-NMR, and MS). The 2'-hydroxy chalcone exhibited IR absorptions the characterized for phenolic-OH at (3432 cm⁻¹), carbonyl C=O at (1639 cm⁻¹), and olefinic C = C(1576 cm⁻¹) at ¹H-NMR functionalities. The spectra showed singlet due to phenolic-OH at δ 12.51 ppm (s, 1H, OH), one doublet due to the two olefinic protons characterized for the chalcone moiety at δ 8.20-8.13 ppm (d, 2H, olefinic), and multiplet due to aromatic protons at δ 8.00 - 6.98 ppm (m, Ar-H). While, the IR spectrum of the 2'methoxy flavonol 4 showed absorption of phenolic-OH at (3289 cm⁻¹), carbonyl C= O at (1614 cm⁻¹). The ¹H-NMR spectra showed singlet due to phenolic-OH at δ 8.88 ppm, and multiplet due to aromatic protons Ar-H at δ 8.16-7.05 ppm.

The antioxidant activity of the synthesized compounds (TAC)

The total antioxidant capacities (TAC) of the synthesized compounds 3 & 4 have been measured in *vitro* via the phosphomolybdenum method, using Ascorbic acid as a standard antioxidant. Results in Table (1) indicate that the 2'-hydroxy chalcone 3 and the 2'-methoxyflavonol 4 possess good antioxidant activities. TAC of the chalcone 3 was 248.00 mg AAE/g compound. Since the antioxidant active site in chalcone compounds is the chalcone moiety (α,βunsaturated carbonyl moiety), the higher the π -electrons cloud surrounding the chalcone moiety, the higher the ability of chalcones to donate odd electrons and scavenging free radicals. The TAC of the 2'-methoxy flavonol 4 was 259.35 mg AAE/g compound. In addition to the high electron cloud, the 2'-methoxy flavonol 4 can scavenge the free radicals by donating a radical proton through the free hydroxyl group at C3 position (Sousa et al., 2016).

Table 1: Total antioxidant capacity (means ±S.D) of the synthesized compounds

Compound No.	Total antioxidant capacity (mg AAE / g compound)		
3	248.00±2.46		
4	259.35±4.37		

TAC mean = Σ TAC / n; n = 3, where (n) is the number of readings.

AAE = Ascorbic acid equivalent.

Effect of 2'-methoxy flavonol on milk vield

Table (2) shows that the effect of treatments on milk production is highly significant. The average daily milk yield (DMY) of Zaraibi goats in the 2'-methoxy flavonol supplemented group (FG) is significantly higher than the control (CG) and vitamin C (AAG) supplemented groups. The overall means of DMY are 931.6, 824.2, and 589.2 g/d, respectively for FG, AAG, and CG. The results indicated that using vitamin C antioxidant feed supplement substantially increased the average daily milk yield of dairy Zaraibi goats, compared to the control group (CG) (824.27 vs 582.26). Results in Table (2) showed that the DMY

in Zaraibi goats increased at the first and second weeks of the suckling period, and then decreased gradually till the end of the lactation period. The highest average DMY was recorded at the second week (the peak week). Similar results were obtained previously on the same goat breed as Mousa (1996) mentioned.

Table 2: Least square means $(g/d) \pm SE$ of daily milk yield as affected by treatment, time and the interaction between them

Time _		Overall mean		
	CG	FG	AAG	Over an incan
\mathbf{W}_1	714.6 ± 48.9	1010.0 ± 66.4	837.5 ± 44.7	854.0 ± 43.8 a
\mathbf{W}_{2}	810.0 ± 64.0	1095.0 ± 73.9	891.7 ± 46.8	$929.7 \pm 48.1~^{\rm a}$
\mathbf{W}_3	655.0 ± 50.3	967.0 ± 71.6	829.2 ± 24.5	$817.8 \pm 50.4^{~ab}$
\mathbf{W}_4	593.8 ± 123.8	885.0 ± 33.2	875.0 ± 57.4	803.3 ± 51.6 ab
\mathbf{W}_5	566.3 ± 154.6	910.0 ± 67.8	858.3 ± 60.8	$797.7 \pm 63.3~^{ab}$
\mathbf{W}_{6}	506.3 ± 139.7	920.0 ± 60.9	840.0 ± 49.2	$777.7 \pm 65.9 ~^{\mathrm{ab}}$
\mathbf{W}_7	479.2 ± 125.4	845.0 ± 67.3	762.5 ± 70.3	$686.8 \pm 63.5~^{\text{bc}}$
\mathbf{W}_8	378.0 ± 121.2	820.0 ± 174.9	700.0 ± 61.9	621.8 ± 79.8 c
Overall mean	$582.3 \pm 94.8 ^{\text{ c}}$	$931.5\pm40.3~^{\text{a}}$	824.3 ± 39.5 $^{\text{b}}$	

 W_{1-8} = weeks of measuring and recording the milk yield starts a week after parturition till the end of suckling period, means with different superscripts (a, b, c, ab, and bc) are significantly different at (P<0.05).

Effect of 2'-methoxy flavonol on milk components

Milk somatic cell counts (SCC) of dairy Zaraibi goats during the suckling period (early lactation) presented in Table (3). Results of milk SCC revealed that 2'-methoxy flavonol and ascorbic acid feed supplements have no influence on milk SCC of dairy Zaraibi goats. The average milk SCC of the three experimental groups CG, FG, and AAG are similar and within the normal range of dairy Zaraibi goats.

Table 3: Least square means ± SE of milk somatic cell counts (cell/ml) as affected by the treatment

Group	SCC*10^5 cell/mL
CG	3.44 ± 0.45
\mathbf{FG}	3.64 ± 0.67
AAG	4.24 ± 0.90

Results in Table (4) indicated that at the second week of the suckling period, the 2'-methoxy flavonol treatment has a significant influence on milk fat% of dairy

Zaraibi goats. Dams in FG have milk fat% significantly higher (P<0.05) than the CG. While milk fat% of AAG did not significantly differ than the other groups (FG and CG). At the 4th and 6th weeks of the suckling period, milk fat% of dairy Zaraibi goats is not influenced by the treatment. For milk protein, lactose, TS, and SNF, the effect of flavonoids and vitamin C supplementation was not significant all over the experimental period. Results in Table (4) showed that sampling time has a significant influence on milk fat, protein, lactose, TS, and SNF. Opposite to milk lactose, milk (fat, protein, TS and SNF) decreased significantly with time. Results also indicated that using vitamin C as feed supplement in the diet of Zaraibi goats insignificantly increased milk fat, protein, TS and SNF and these findings agreed with another goat species, where milk fat, protein, TS, and SNF of Agamy goats supplemented with vitamin C increased significantly (Abd-EL-Rahman et al., 2015).

Effect of 2'-methoxy flavonol on BW, WW, and DWG of goats' kids

As shown in Table (5), although the average birth weight (BW) of goats' kids in CG is higher than kids in FG and AAG, their average weaning weight (WW) is lower than that of kids in FG and AAG, which means that 2'-methoxy flavonol and vitamin C feed supplements enhance the daily weight gain (DWG) of goats' kids. The average BW of kids is 3.20, 2.02, and 2.34 Kg; the average WW of kids is 6.02,

7.67, and 6.84 Kg, respectively for CG, FG, and AAG. The average daily weight gain (DWG) of kids substantially influenced by 2'-methoxy flavonol supplementation to their dams at the late stage of pregnancy and the early lactation period. Kids of 2'-methoxy flavonol supplemented group FG have DWG significantly higher (p<0.05) than CG and AAG (62.83, 31.40 & 50.40 g/d, respectively).

Table 4: Least square means \pm SE of milk components (%) as affected by treatment, time and the interaction between them

Source of variation	Fat %	Protein %	Lactose %	TS %	SNF %
Treatment * time	NS	NS	NS	NS	NS
\mathbf{W}_{2}					
CG	$5.47^b \pm 0.7$	4.31 ± 0.2	4.15 ± 0.2	14.77 ± 0.8	8.63 ± 0.5
FG	$8.13^a \pm 0.6$	3.95 ± 0.2	3.85 ± 0.2	16.76 ± 0.7	8.63 ± 0.5
AAG	$6.41^{ab}\pm0.5$	4.20 ± 0.1	4.23 ± 0.1	15.78 ± 0.5	9.37 ± 0.4
$\mathbf{W_4}$					
CG	4.26 ± 0.5	3.45 ± 0.1	5.06 ± 0.2	13.31 ± 0.8	9.06 ± 0.3
FG	3.98 ± 0.6	3.35 ± 0.1	4.92 ± 0.2	12.78 ± 0.9	8.80 ± 0.3
AAG	3.27 ± 0.5	3.41 ± 0.1	5.01 ± 0.1	12.22 ± 0.7	8.96 ± 0.3
\mathbf{W}_{6}					
CG	3.87 ± 0.8	3.06 ± 0.1	4.48 ± 0.1	11.87 ± 0.9	8.00 ± 0.1
FG	3.81 ± 0.9	3.19 ± 0.2	4.67 ± 0.4	12.16 ± 1.5	8.35 ± 0.7
AAG	2.98 ± 0.1	3.17 ± 0.1	4.65 ± 0.1	11.29 ± 0.2	8.31 ± 0.2
Treatment	NS	NS	NS	NS	NS
CG	4.48 ± 0.4	3.58 ± 0.1	4.66 ± 0.1	13.32 ± 0.5	8.66 ± 0.2
FG	5.44 ± 0.4	3.53 ± 0.1	4.46 ± 0.1	14.05 ± 0.5	8.62 ± 0.2
AAG	4.51 ± 0.3	3.69 ± 0.1	4.63 ± 0.1	13.53 ± 0.4	9.01 ± 0.2
Sampling Time	**	*	*	*	*
W_2	$6.70^{a} \pm 0.3$	$4.15^{a} \pm 0.1$	$4.11^{c} \pm 0.1$	$15.84^{a} \pm 0.5$	$9.00^a \pm 0.2$
W_4	$3.75^{b} \pm 0.3$	$3.41^{b} \pm 0.1$	$5.00^{a} \pm 0.1$	$12.70^{b} \pm 0.4$	$8.95^a \pm 0.2$
W_6	$3.55^{b} \pm 0.4$	$3.14^c \pm 0.1$	$4.60^{\mathrm{b}} \pm 0.1$	$11.77^{b} \pm 0.6$	$8.22^b \pm 0.3$

Treatment = (60 mg/kg body weight/d) of the 2'-methoxy flavonol 4 and/or vitamin C, sampling time $(W_2, W_4, \text{ and } W_6)$ the 2^{nd} , 4^{th} and 6^{th} weeks of suckling period, NS = insignificant, means with different superscript (a, b, c) are significantly different at (P < 0.05).

Table 5: Least square means \pm SE of birth weight (Kg), weaning weight (Kg), and daily weight gain (g/d) of goats' kids as affected by the treatment

group	BW (Kg)	WW(Kg)	DWG(g/d)
CG	3.20±0.37	6.02 ± 0.79	31.40±8.34 ^b
\mathbf{FG}	2.03 ± 0.34	7.67 ± 0.73	62.83 ± 7.61^{a}
AAG	2.34 ± 0.37	6.84 ± 0.79	50.40 ± 8.34^{ab}

BW= birth weight, WW= weaning weight, and DWG= daily weight gain, means with different superscripts (a, b, ab) are significantly different at (P<0.05).

Effect of 2'-methoxy flavonol on blood parameters

Table (6) demonstrated that serum total protein (TP), albumin, globulin, creatinine, blood urea nitrogen and (BUN) concentrations total and antioxidant capacity (TAC), malondialdehyde (MDA), Alanine aminotransferase (ALT) and aminotransferase Aspartate activities of dams in the three experimental groups are within the normal range of dairy Zaraibi goats. No significant differences have been observed due to supplementation with 2'-methoxy flavonol 4 and / or vitamin C on BUN, Globulin, and creatinine concentration and on TAC, MDA, and AST activities. Although 2'methoxy flavonol 4 supplementation significantly decreased the Albumin concentration and ALT activity, their values are still within the normal range of the dairy Zaraibi goats. The results that revealed also Vitamin supplementation increased serum TP. The above results indicated that dams in the three experimental groups are in good nutritional and physiological status, which indicates that using 2'-methoxy flavonol 4 and vitamin C as feed supplements has no negative effect on their nutritional and physiological status.

DISCUSSION

The high energy demand for foetus growth and development during pregnancy and early lactation periods induces oxidative stress, which decreases the mammary gland functions and consequently decreases the milk synthesis. Through the in vitro study of the antioxidant activity of the 2'-methoxy flavonol 4, we indicated that the 2'-methoxy flavonol 4 is a potent antioxidant and can scavenge free radicals. Furthermore, the in vivo study reported that, at 60 days of supplementation the MDA concentration in FG is lower than that in CG, and at 30 days supplementation the TAC of FG and AAG was higher than that of the CG, which indicates in *vivo* antioxidant activity of 2'-methoxy flavonol and its ability to reduce the lipid peroxidation through direct scavenging of free radicals and consequently enhance the mammary gland functions and the milk synthesis.

Since there are no previous studies had explored the effect of synthetic flavonoids / 2'-methoxy flavonol on dairy goats' milk yield and composition and on the growth performance of goat's kids, we compared our findings with studies supplementing flavonoids from different sources and on the different species. The previous studies indicated that flavonoid extracts have the ability to increase the effective degradation rate of dry matters and the utilization of nutrients, which led to increased milk production of dairy goats (Zhao et al., 2022). Also, it had been indicated that flavonoids can significantly increase the cellulolytic bacteria Ruminococcusalbus which potentially increases cellulose degradation and subsequently increases the daily milk yield (Li et al., 2020). Moreover, the antimicrobial properties of flavonoids enable them to effectively reduce the ruminal methanogens and protozoa populations, which consequently reduce the methane gas emission without any adverse effects on rumen microbial fermentation (Kim et al., 2015; Oskoueian et al., 2013; Sinz et al., 2018). These favourable effects of flavonoids on rumen fermentation and nutrient utilization lead the potential increase in milk production.

It had been shown previously that vitamin C supplementation can manage and reduce oxidative stress and enhance milk production of goats (Abd-EL-Rahman *et al.*, 2015; Semsirmboon *et al.*, 2023) and our findings are in line with these previous findings.

Table 6: Least square means \pm SE of blood parameters as affected by treatment, time, and the interaction between them

group	0 day	30th day	60th day	90th day	Overall mean		
group	o uu y	<u> </u>		Join day	Overam mean		
MDA (μMol/ml)							
CG	4.72 ± 0.5	7.75 ± 1.1	7.02 ± 0.7	6.92 ± 1.7	6.57±0.6		
FG AAG	4.45 ± 0.3	9.28 ± 1.2 9.30 ± 0.6	5.44±0.7 7.16±0.6	6.70 ± 1.1 6.40 ± 0.9	6.79±0.6		
	5.91 ± 0.7	9.30 ± 0.6 8.80 ± 0.6 ^a	$6.52\pm0.4^{\text{b}}$	7.04 ± 0.7^{b}	7.19 ± 0.4		
Overall mean	$5.03 \pm 0.3^{\circ}$		0.32±0.4 nMol/L)	7.04 ± 0.7			
CG	0.32 ± 0.1	0.54 ± 0.1	0.43 ± 0.1	0.48 ± 0.1	0.44 ± 0.04		
FG	0.32 ± 0.1 0.33 ± 0.04	0.54 ± 0.1 0.61 ± 0.1	0.43 ± 0.1 0.33 ± 0.1	0.48 ± 0.1 0.43 ± 0.1	0.44 ± 0.04 0.43 ± 0.04		
AAG	0.33 ± 0.04 0.43 ± 0.1	0.61 ± 0.1 0.65 ± 0.04	0.33 ± 0.1 0.49 ± 0.04	0.43 ± 0.1 0.42 ± 0.1	0.43 ± 0.04 0.50 ± 0.03		
Overall mean	$0.36 \pm 0.04^{\text{b}}$	0.60 ± 0.04 0.60 ± 0.03^{a}	0.49 ± 0.04 0.42 ± 0.04 ^b	0.42 ± 0.1 0.44 ± 0.04 ^b	0.50 ± 0.05		
Over all lilean	0.30 ± 0.04		g/dL)	0.44 ± 0.04			
CG	7.42 ± 0.1	7.92 ± 0.4	8.19 ± 0.2	8.27 ± 0.1	7.93±0.2ab		
FG	7.42 ± 0.1 7.24 ± 0.3	7.84 ± 0.3	7.42 ± 0.5	7.94 ± 0.3	$7.44\pm0.3^{\text{b}}$		
AAG	7.73 ± 0.2	8.04 ± 0.3	8.17 ± 0.2	8.09 ± 0.3	8.01 ± 0.1^{a}		
Overall mean	7.47 ± 0.2	7.95 ± 0.2	7.66 ± 0.3	8.10 ± 0.2	0.01±0.1		
O verum meum	7.17 = 0.1		n (g/dL)	0.10 = 0.2			
CG	3.70 ± 0.1	3.73 ± 0.1	3.70 ± 0.1	3.58 ± 0.1	3.68 ± 0.03^{a}		
\mathbf{FG}	3.65 ± 0.03	3.64 ± 0.04	3.57 ± 0.04	3.46 ± 0.1	3.58 ± 0.03^{b}		
AAG	3.73 ± 0.04	3.66 ± 0.1	3.65 ± 0.1	3.58 ± 0.1	3.65 ± 0.02^a		
Overall mean	3.69 ± 0.02^a	$3.68 \pm 0.03^{\text{a}}$	3.64 ± 0.03^a	$3.54\pm0.03^{\rm b}$			
		Globuli	n (g/dL)				
CG	3.72 ± 0.1	4.19 ± 0.5	4.49 ± 0.3	4.69 ± 0.1	4.26 ± 0.2		
\mathbf{FG}	3.59 ± 0.3	4.21 ± 0.3	3.84 ± 0.4	4.49 ± 0.3	3.86 ± 0.2		
AAG	4.00 ± 0.2	4.38 ± 0.3	4.52 ± 0.2	4.52 ± 0.3	4.36 ± 0.1		
Overall mean	3.78 ± 0.1^{b}	4.27 ± 0.2^{ab}	4.02 ± 0.3^{ab}	4.56 ± 0.1^a			
		ALT ((IU/L)				
CG	23.86 ± 0.7	27.00 ± 1.2	25.17 ± 1.1	26.00 ± 1.4	25.49 ± 0.6^{a}		
\mathbf{FG}	22.75 ± 1.2	24.38 ± 0.9	24.29 ± 1.02	24.71 ± 0.9	23.99 ± 0.5^{b}		
AAG	25.50 ± 1.2	26.71 ± 1.1	26.00 ± 1.2	25.00 ± 0.8	$26.19\pm0.5^{\rm a}$		
Overall mean	24.57 ± 0.6	26.01 ± 0.6	25.16 ± 0.6	25.16 ± 0.6			
		AST ((IU/L)				
CG	38.00 ± 6.0	53.60 ± 2.0	58.33 ± 4.4	39.50 ± 2.6	45.56 ± 2.8		
\mathbf{FG}	45.14 ± 3.4	60.00 ± 4.7	48.57 ± 6.8	45.88 ± 5.8	50.64 ± 2.4		
AAG	42.25 ± 1.9	57.57 ± 5.1	50.75 ± 4.3	42.00 ± 7.2	48.13 ± 2.4		
Overall mean	40.72 ± 2.8^{b}	$57.17\pm3.03^{\mathrm{a}}$	$52.07\pm3.0^{\mathrm{a}}$	42.50 ± 2.9^{b}			
BUN (mg/dL)							
CG	46.93 ± 1.2	47.28 ± 1.8	47.06 ± 3.0	55.53 ± 2.8	49.19 ± 1.3		
FG	49.22 ± 1.3	49.15 ± 2.5	48.02 ± 5.7	59.62 ± 1.8	51.94 ± 1.1		
AAG	48.68 ± 1.4	48.17 ± 1.5	46.23 ± 1.5	54.48 ± 1.8	49.37 ± 1.1		
Overall mean	48.29 ± 1.3^{b}	48.17 ± 1.4^{b}	47.05 ± 1.4^{b}	57.15±1.4 ^a	1,12,		
Creatinine (mg/dL)							
CG	0.66 ± 0.1	1.10 ± 0.1	$\frac{0.86 \pm 0.1}{0.86 \pm 0.1}$	0.97 ± 0.1	0.90 ± 0.1		
FG	0.82 ± 0.1	1.10 ± 0.1 1.15 ± 0.3	1.03 ± 0.2	0.97 ± 0.1 0.88 ± 0.2	0.90 ± 0.1 0.97 ± 0.1		
AAG	0.78 ± 0.1	0.86 ± 0.2	0.98 ± 0.1	0.00 ± 0.2 0.93 ± 0.1	0.89 ± 0.1		
Overall mean	$0.75 \pm 0.1^{\text{b}}$	1.04 ± 0.1^{a}	0.96 ± 0.1^{ab}	0.93 ± 0.1^{ab}	0.05 = 0.1		
MDA = malandia			ot conscity TD-	total protein B	TD. 1.1. 1		

MDA= malondialdehyde, TAC= total antioxidant capacity, TP= total protein, BUN= blood urea nitrogen, ALT= Alanine amino transferase, AST= Aspartate amino transferase, means with different superscript (a, b, ab, c) are significantly different at (P<0.05).

The milk fat content increases increasing the crude fiber content in the diet of dairy animals (Abdel-Rahman & Mehaia, 1996), and as mentioned before, flavonoids have the ability to increase the degradation and utilization of crude fiber, which explains the substantial increase in milk fat % of 2'-methoxy flavonol group (FG), compared to the control (CG) and ascorbic acid group (AAG). Also, it is well known that the stage of lactation affects the milk fat content, as the lactation progresses, the milk fat content decreases (Šlyžius et al., 2017). These results are consistent with that obtained by two other investigators, who indicated that flavonoid extracts from hybrid Broussonetia papyrifera fermented feed can increase the polyunsaturated fatty acids in goats' and cows' milk (Si et al., 2018; Zhao et al., 2022). Values of milk components (fat, protein, lactose, TS, and SNF) obtained in the present study were within the normal range of dairy Zaraibi goats' milk and higher than that obtained previously on the same breed (Abdelhamid et al., 2011; Abedo et al., 2013; Ahmed et al., 2008).

According to the study that stated "the threshold of 16,000,000 cells/ml gave the best indication for health status of the Egyptian Nubian (Zaraibi) goat breed" (El-Saied et al., 2003), values of milk SCC of Zaraibi goats in the three experimental groups are within the normal range of healthy dairy Zaraibi goats. The results of the present study are close to that obtained before (Ahmed et al., 2008) and extremely lower than other studies on the same goat breed (Abdelhamid et al., 2011; Madkour et al., 2016). On the other hand, the results of the present study disagree with that indicated alfalfa flavonoids substantially decreased milk SCC of Holstein cows (Zhan et al., 2017). Our findings also disagree with the results indicated that milk SCC of Agamy goats supplemented with vitamin C is significantly lower than that of the control group (Abd-EL-Rahman et al., 2015).

Since dams' milk is the sole source of food to the per-weaned kids, the higher the quantity and quality of milk suckled the higher the average daily weight gain of the kids. The substantial increase in the average DWG of kids, whose dams supplemented with 2'-methoxy flavonol indicates the increase in the average DMY and in the milk fat%. Also, it was previously indicated that feed supplements rich in flavonoids increased the birth weight and daily weight gain, decreased the mortality rate of Beetal goats' kids reared under a sub-tropical environment (Yaseen et al., Moreover, it was indicated that flavonoids significantly increased the daily weight gain and the average daily feed intake, and significantly decrease the feed conversion ratio of meat sheep (Mugier et al., 2017). All these findings are considered a well explanation for the substantial increase in the daily weight gain of kids whom dams have been supplemented with 2'-methoxy flavonol 4. The increase in average DWG of kids that their dams supplemented with vitamin C can be supported by the study, which indicated that vitamin C supplementation significantly increased the weaning weight as well as the daily weight gain of kids in the vitamin C supplemented group (Abd-EL-Rahman et al., 2015).

Our findings indicated also that all measured biochemical parameters are within the normal range of dairy Zaraibi goats and similar to that obtained previously on the same breed (Abdelhamid *et al.*, 2011; Abou-Elenin *et al.*, 2016; Ahmed *et al.*, 2008), and are similar also to that obtained on different goat breeds (Tibbo *et al.*, 2008).

CONCLUSION

Results showed that the use of 2'-methoxy flavonol 4 as antioxidant feed supplements in the diet of pregnant Zaraibi goats at the late stage of pregnancy and early lactation periods can significantly increase the daily milk yield, milk fat %, and the daily

weight gain of kids, without any adverse effect on the nutritional and physiological status of goats.

Statements & Declarations *Funding*

No funding was received for conducting this study.

Declaration of competing interest

There are no conflicts of interest to declare.

Data availability

All data supporting the results of this study are within the manuscript.

ACKNOWLEDGEMENT

The authors would like to express their deep appreciation and indebtedness to Asso. Prof. Mosad A. Gharreb, Dr. Liza A. AbdEl-Rafaa, Dr. Osama Elkhashen, and Dr. Taha Abdel-sabour for their help and support during the progress of the work.

REFERENCES

- Abd-EL-Rahman, H., Ibrahim, M., RMA, D. and Asfour, H.A.E. (2015): The relation between oxidative status, milk quality and conception rate in dairy goats supplemented with vitamin C. Assiut Veterinary Medical Journal, 61(145), 257-269.
- Abdel-Rahman, K. and Mehaia, M. (1996): Influence of feeding different crude fiber levels on milk yield and milk composition of Najdi ewes. Small Ruminant Research, 19(2), 137-141.
- Abdelhamid, A., Shehata, E. and Maged, G. (2011): Effect of some medical herbs on production of lactating Zaraibi goats. Journal of Animal and Poultry Production, 2(12), 493-513.
- Abedo, A., Hafez, Y., Khalifa, E., Mohamed, B. and El-Zolaky, O. (2013): Milk yield and composition of dairy Zaraibi goats fed microbial inoculated corn silage. Egyptian Journal of Sheep and Goats Sciences, 8(1), 1-12.
- Abou-Elenin, E.I., EL-Hosseiny, H.M., El-Badawy, M., Hafez, Y. and Teleb,

- D.F. (2016): Comparing the Effect of Different Feeding Allowances on Performance of Egyptian Zaraibi Goats and their kids. Journal of Animal and Poultry Production, 7(8), 303-312.
- Ahmed, M.E., E.I. Shehata, F.F. Abou Ammou, A.M. Abdel-Gowad and K.M. Aiad (2008): Milk Production, Feed Conversion Rate and Reproduction of Zaraibi Goat in Response to Bacterial Feed Additive During Late Pregnancy and Lactation. Egyptian J. Anim. Prod., 45(Dec), 189-203.
- Ali, S.M.M., Salem, M.S., Madkour, H.M. and Zidan, A. (2023): 2 (1 H)-Pyridone and Quinolone as Synthon for Efficient and Simple Synthesis of Polysubstituted Pyridines and Quinolines. Polycyclic Aromatic Compounds, 43(1), 328-342.
- Chiruta, C., Schubert, D., Dargusch, R. and Maher, P. (2012): Chemical modification of the multitarget neuroprotective compound fisetin. J. Med. Chem., 55(1), 378-389. doi:10.1021/jm2012563
- Dofe, V.S., Sarkate, A.P., Lokwani, D.K., Kathwate, S.H. and Gill, C.H. (2017): Synthesis, antimicrobial evaluation, and molecular docking studies of novel chromone based 1, 2, 3-triazoles. Research on Chemical Intermediates, 43, 15-28.
- El-Kady, M., Abbas, E.M., Salem, M.S., Kassem, A.F. and Abd El-Moez, S.I. (2016): Synthesis and antimicrobial evaluation of novel 1, 3-thiazoles and unsymmetrical azines. Research on Chemical Intermediates, 42, 3333-3349.
- El-Saied, U.M., R.E. Al-Ahwal, M.E. Ahmed, Ferial Hassan and B.M. Edrise. (2003): Relationship between somatic cell count and intramammary infection in egyptian zaraibi goats. Egyptian J. Anim. Prod., 40(2), 129-137.

- Frimayanti, N., Ikhtiarudin, I., Septama, A.W., Susanty, A. and Isrog, N.D. (2023): Synthesis, In Silico and Insight of Structural Flavonol Derivative Compounds as New Competitive NS2B/NS3 Dengue Protease Inhibitor. Journal Research in Pharmacy, 27(3), 1157-1169. doi:10.29228/jrp.406
- Ghareeb, M., Saad, A., Ahmed, W., Refahy, L. and Nasr, S. (2018a): HPLC-DAD-ESI-MS/MS characterization of bioactive secondary metabolites from Strelitzia nicolai leaf extracts and their antioxidant and anticancer activities In vitro. Pharmacognosy Research, 10(4). doi:10.4103/pr.pr_89_18
- Ghareeb, M.A., Mohamed, T., Saad, A.M., Refahy, L.A., Sobeh, M. and Wink, M. (2018b): HPLC-DAD-ESI-MS/MS analysis of fruits from Firmiana simplex (L.) and evaluation of their antioxidant and antigenotoxic properties. J Pharm Pharmacol, 70(1), 133-142. doi:10.1111/jphp.12843
- Ghareeb, M.A., Sobeh, M., Rezq, S., El-Shazly, A.M., Mahmoud, M.F. and Wink, M. (2018c): HPLC-ESI-MS/MS Profiling of Polyphenolics of a Leaf Extract from Alpinia zerumbet (Zingiberaceae) and Its Anti-Inflammatory, Anti-Nociceptive, Antipyretic and Vivo. Molecules, Activities In doi:10.3390/ *23*(12). molecules 23123238
- Grotewold, E. (2006): The science of flavonoids: Springer.
- Halim, A.S.A., Salem, M.S., Al-Mabrook, S.A. and El-Hashash, M.A. (2024): Synthesis, cytotoxicity and molecular docking of novel quinazoline-4 (3H)-thione derivatives as EGFR-TKIs. Journal of the Indian Chemical Society, 101(11), 101388.
- Huang, Y., Wen, J., Kong, Y., Zhao, C., Liu, S., Liu, Y. and Wang, J. (2021):

- Oxidative status in dairy goats: periparturient variation and changes in subclinical hyperketonemia and hypocalcemia. *BMC Vet Res, 17*(1), 238. doi:10.1186/s12917-021-02947-1
- Hussain, T., Murtaza, G., Metwally, E., Kalhoro, D.H., Kalhoro, M.S., Rahu, B.A. and Tan, B. (2021): The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators Inflamm, 2021, 9962860. doi:10.1155/2021/9962860
- Ismail, M.F., Madkour, H.M., Salem, M.S., Mohamed, A.M. and Aly, A.F.J.S.C. (2021): Design, synthesis and insecticidal activity of new 1, 3, 4-thiadiazole and 1, 3, 4-thiadiazolo [3, 2-a] pyrimidine derivatives under solvent-free conditions. 51(17), 2644-2660.
- Khlosy, T.A., Salem, M.S., Ali, A.T. and Madkour, H.M. (2020): Synthesis and cytotoxic activity against human tumor cells of heterocyclic systems derived from 2-thioxo-1, 2-dihydro-4H-3, 1-benzothazin-4-one. Journal of Heterocyclic Chemistry, 57(1), 60-68.
- Kim, E.T., Guan le, L., Lee, S.J., Lee, S.M., Lee, S.S., Lee, I.D. and Lee, S.S. (2015): Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics. Asian-Australas J Anim Sci, 28(4), 530-537. doi:10.5713/ajas.14.0692
- Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S. and Cosic, V. (2001): Method for the measurement of antioxidant activity in human fluids. Journal of Clinical Pathology, 54(5), 356-361.
- Kralj, A., Nguyen, M.T., Tschammer, N., Ocampo, N., Gesiotto, Q., Heinrich, M.R. and Phanstiel, O.T. (2013):

 Development of flavonoid-based inverse agonists of the key signaling receptor US28 of human

- cytomegalovirus. *J Med Chem,* 56(12), 5019-5032. doi:10.1021/jm4003457
- Li, J., Xiong, M., Liu, J., Zhang, F., Li, M., Zhao, W. and Xu, Y. (2023): Discovery of novel cGAS inhibitors based on natural flavonoids. Bioorganic Chemistry, 140, 106802.
- Li, M., Hassan, F.U., Tang, Z., Peng, L., Liang, X., Li, L. and Yang, C. (2020): Mulberry Leaf Flavonoids Improve Milk Production, Antioxidant, and Metabolic Status of Water Buffaloes. Front Vet Sci, 7, 599. doi:10.3389/fvets.2020.00599
- Li, Y., Meng, Q., Zhou, B. and Zhou, Z. (2017): Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on the fecal bacterial community composition in finishing steers. BMC Microbiol, 17(1), 97. doi:10.1186/s12866-017-1011-9
- Madkour, H.M., Hassan, F., Salem, M.S. and Soliman, M.R. (2016): Study of Chalcones' Effect on Milk Production in Zaraibi Goats. Egyptian Journal of Sheep and Goats Sciences, 11(3), 1-12.
- Madkour, H.M.F., El-Hashash, M.A.E.-A.M., Salem, M.S. and Mahmoud, A.-S.O.A. (2018a): Synthesis, antileishmanial and cytotoxicity activities of fused and nonfused tetrahydroquinoline derivatives.

 Research on Chemical Intermediates, 44, 3349-3364.
- Madkour, H.M.F., El-Hashash, M.A.E.A.M., Salem, M.S., Mahmoud, A.S.O.A. and Al Kahraman, Y.M. (2018b): Design, synthesis, and in vitro antileishmanial and antitumor activities of new tetrahydroquinolines. Journal of Heterocyclic Chemistry, 55(2), 391-401.
- Mistry, H.D. and Williams, P.J. (2011): The importance of antioxidant micronutrients in pregnancy. Oxid Med Cell Longev, 2011, 841749. doi:10.1155/2011/841749

- Mohamed, A.M., Ismail, M.F., Madkour, H.M., Alv, A.F. and Salem, M.S. (2020): Straightforward synthesis of 2-chloro-N-(5-(cyanomethyl)-1, 3, 4thiadiazol-2-yl) benzamide as a precursor for synthesis of novel heterocyclic compounds with insecticidal activity. Synthetic Communications, 50(22), 3424-3442.
- Mousa, M.R. (1996): Physiological and nutritional studies on goats: effect of plane of nutrition on productive and reproductive performance of Egyptian-Nubian goats. (PhD thesis,), Faculty of Agriculture, Mansoura University, Egypt,
- Muqier, Qi, S., Wang, T., Chen, R., Wang, C. and Ao, C. (2017): Effects of flavonoids from Allium mongolicum Regel on growth performance and growth-related hormones in meat sheep. Anim Nutr, 3(1), 33-38. doi:10.1016/j.aninu.2017.01.003
- Murti, Y., Goswam, A. and Mishra, P. (2013): Synthesis and antioxidant activity of some chalcones and flavanoids. Inter J Pharm Tech Res, 5, 811-818.
- NRC (2007): Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids: National Academy Press.
- Ohkawa, H., Ohish, W. and Yag, I. (1975): Determination of malondialdehyde. *Anal. Biochem*, 95, 351.
- Oskoueian, E., Abdullah, N. and Oskoueian, A. (2013): Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed Res Int, 2013, 349129. doi:10.1155/2013/349129
- Prakash, O., Kumar, R. and Parkash, V. (2008): Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl) chromones. Eur J Med Chem, 43(2), 435-440. doi:10.1016/j.ejmech.2007.04.004

- Prieto, P., Pineda, M. and Aguilar, M. (1999): Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, *269*(2), 337-341.
- Salem, M.S., Al-Mabrook, S.A.M. and El-Hashash, M.A.E.A.M. (2020): Synthesis and antiproliferative evaluation of some novel quinazolin-4 (3 H)-one derivatives. Journal of Heterocyclic Chemistry, 57(11), 3898-3906.
- Salem, M.S. and Errayes, A.O. (2016): Synthesis and antioxidant properties of novel pyrimidine-containing heterocycles. *Journal of Chemical Research*, 40(5), 299-304.
- SAS, S.J.C.N. (2002): User's guide, version 9.0 SAS Institute Inc.
- Sebastiani, $G_{\cdot \cdot \cdot}$ Navarro-Tapia, E.Almeida-Toledano. L..Serra-Delgado, M., Paltrinieri, A. L., Garcia-Algar, О. and Andreu-Fernandez, V. (2022): Effects of Antioxidant Intake on Development and Maternal/Neonatal Health during Pregnancy. Antioxidants (Basel), 11(4). doi:10.3390/antiox11040648
- Semsirmboon, S., Do Nguyen, D.K., Chaiyabutr, N., Poonyachoti, S., Lutz, T.A. and Thammacharoen, S. (2023): High Dietary Cation and Anion Difference and High-Dose Ascorbic Acid Modify Acid-Base and Antioxidant Balance in Dairy Goats Fed under Tropical Conditions. Animals (Basel), 13(6). doi:10.3390/ani13060970
- Shen, X., Zhou, Q., Xiong, W., Pu, W., Zhang, W., Zhang, G. and Wang, C. (2017): Synthesis of 5-subsituted flavonols via the Algar-Flynn-Oyamada (AFO) reaction: The mechanistic implication. Tetrahedron, 73(32), 4822-4829.

- Sheng, R., Lin, X., Zhang, J., Chol, K.S., Huang, W., Yang, B. and Hu, Y. (2009): Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors. Bioorganic & Medicinal Chemistry, 17(18), 6692-6698.
- Si, B., Tao, H., Zhang, X., Guo, J., Cui, K., Tu, Y. and Diao, Q. (2018): Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian-Australas J Anim Sci, 31(8), 1259-1266. doi:10.5713/ajas.17.0847
- Sinz, S., Kunz, C., Liesegang, A., Braun, U., Marquardt, S., Soliva, C.R. and Kreuzer, M. (2018): In vitro bioactivity of various pure flavonoids in ruminal fermentation, with special reference to methane formation. Czech Journal of Animal Science, 63(8), 293-304. doi:10. 17221/118/2017-cjas
- Šlyžius, E., Šlyžienė, B. and Lindžiūtė, V. (2017): Factors affecting goat milk fat yield. Žemės ūkio mokslai, 24(3).
- Sobeh, M., Mahmoud, M.F., Hasan, R.A., Abdelfattah, M.A., Sabry, O.M., Ghareeb, M.A. and Wink, M. (2018):

 Tannin-rich extracts from Lannea stuhlmannii and Lannea humilis (Anacardiaceae) exhibit hepatoprotective activities in vivo via enhancement of the antiapoptotic protein Bcl-2. Scientific reports, 8(1), 9343.
- Sousa, J.L., Proenca, C., Freitas, M., Fernandes, E. and Silva, A.M. (2016): New polyhydroxylated flavon-3-ols and 3-hydroxy-2-styrylchromones: synthesis and ROS/RNS scavenging activities. Eur J Med Chem, 119, 250-259. doi:10.1016/j.ejmech.2016.04.057
- Tibbo, M., Jibril, Y., Woldemeskel, M., Dawo, F., Aragaw, K. and Rege, J.E. (2008): Serum enzymes levels and influencing factors in three

indigenous Ethiopian goat breeds. *Trop Anim Health Prod*, 40(8), 657-666. doi:10.1007/s11250-008-9145-2

Yaseen, A., Hussain, T., Hameed, A., Shahzad, M., Mazhar, M.U. and Chughtai, M.I. (2022): Flavonoid enriched supplementation abrogates prenatal stress and enhances goat kids performance reared in a subtropical environment. Research in Veterinary Science, 146, 70-79.

Zhan, J., Liu, M., Su, X., Zhan, K., Zhang, C. and Zhao, G. (2017): Effects of alfalfa flavonoids on the production performance, immune system, and

ruminal fermentation of dairy cows. *Asian-Australas J Anim Sci*, 30(10), 1416-1424. doi:10.5713/ajas.16.0579

Zhao, M., Lv, D., Hu, J., He, Y., Wang, Z., Liu, X. and Hu, J. (2022): Hybrid Broussonetia papyrifera Fermented Feed Can Play a Role Through Flavonoid Extracts to Increase Milk Production and Milk Fatty Acid Synthesis in Dairy Goats. Front Vet Sci, 9, 794443. doi:10.3389/fvets. 2022.794443

إستخدام ٣-هيدروكسي-٢-(٢-ميثوكسي فينيل)-٤ هيدرو-كرومين-٤-اون كإضافات غذائية مضادة للاكسدة على إنتاج الحليب ومعدل النمو في الماعز

منار رمضان عبدالجابر سليمان ' ، مروة سيد سالم ' ، فاتن فهمي أبوعمو ' ، حسن محمد فوزي مدكور '

ا قسم بحوث الاغنام و الماعز, معهد بحوث الإنتاج الحيواني, مركز البحوث الزراعية, حي الدقي, محافظة الجيزة, جمهورية مصر العربية.

٢ قسم الكيمياء, كلية العلوم, جامعة عين شمس, حي العباسية, محافظة القاهرة, جمهورية مصر العربية.

Email: manarsoliman p@sci.asu.edu.eg Assiut University web-site: www.aun.edu.eg

تهدف هذه الدراسة إلى دراسة تأثير إستخدام ٣-هيدروكسي-٢-(٢-ميثوكسي فينيل)-٤ H-كرومين-٤-اون / (٢-ميثوكسي فلافونول) (٤) و هو احد مشتقات الفلافونيدات المصنعة معمليًا كمكمل غذائي مضاد للاكسدة على الإجهاد التأكسدي، وإنتاج الحليب، ومعدل نمو الجداء في الماعز الزرايبي، مقارنةً بفيتامين سي كمضاد للأكسدة قياسي. تم تحضير ١٦-ميثوكسي فلافونول (٤)، من خلال تفاعل التأكسد الحلقي لـ ١-(٢-هيدروكسي فينيل)-٣-(٢-ميثوكسي فينيل) بروب-٢-إين-١-أون ٣) وهو أحد مشتقات الشالكونيدات وتم التاكد من التركيب الكيميائي للمركبين (٣ و٤) من خلال قياس درجات الانصهار (mp) والأدوات الطيفية (مثل الأشعة تحت الحمراء والرنين النووي المغناطيسي البروتوني والطيف الكتلي). كما تم قياس السعة الكلية المضادة للأكسدة (TAC) للمركبين (٣ و ٤) باستخدام اختبار الفوسفوموليبدينوم. تم توزيع أربع وعشرين ماعزًا عشار في الشهر الاخير من فترة الحمل من سلالة الزرايبي عشوائيًا على ثلاث مجموعات. تلقت المجموعة الكنترول (CG) النظام الغذائي الأساسي (BD)، بينما تلقت مجموعة الفلافونيدات (FG) النظام الغذائي الأساسي بإضافة إلى (٦٠ ملجم/كجم من وزن الجسم/ يوم) من المركب رقم ٤ (١٢-ميثوكسي فلافونول)، بينما تلقت مجموعة فيتامين سي (AAG) النظام الغذائي الأساسي بإضافة إلى (٦٠ ملجم/كُجم من وزن الجسم/ يوم) من فيتامين سي. أشارت النتائج إلى أن المركبين المُصنّعين (٣ و٤) يتمتعان بقدرة جيدة على مقاومة الأكسدة. وقد زاد معدل إنتاج اللبن اليومي (DMY)، ومحتوى اللبن من الدهن ، ومعدل الزيادة اليومية في وزن الجداء (DWG) في المجموعة FG بشكل ملحوظ مقارنة بمجموعتي CG و AAG. كما أشارت النتائج إلى أن جميع قياسات الدم التي تم قياسها تقع ضمن المعدلات الطبيعية. ختامًا، يمكن أن يُقلل استخدام ٢٠-ميثوكسي فلافونول(ع) كمكمل غذائي مضاد للأكسدة في تغذية الماعز الزرايبي العشار من الإجهاد التأكسدي، ويزيد من إنتاج الحليب اليومي ونسبة دهن الحليب، ويزيد من معدل الزيادة اليومية في وزن الجداء دون أي تأثير سلبي على الحالة الغذائية والفسيولوجية للماعز.