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ABSTRACT 
 

Vincristine (VCR) is an effective anticancer medication, although it has neurotoxic side 

effects. Erythropoietin (EPO) is the main regulator of erythropoiesis. Thymoquinone (TQ) 

protects brain cells from oxidative stress that causes neurodegenerative disorders such as 

Alzheimer's and Parkinson's. This study aims to investigate the VCR toxicity on the cerebrum 

as well as the possible neuroprotective effects of TQ and EPO against VCR toxicity in a rat 

model. An intraperitoneal injection of VCR (150 μg/kg) 3 times a week for 5 weeks caused 

marked histopathological changes in the brain such as neuronal degeneration with 

aggregations of glial cells around the degenerated neurons (satellitosis), congestion of blood 

vessels and severe demyelination in the white matter of the cerebrum. VCR considerably 

increased nestin, iBA1 and iNOS expression, while synaptophysin expression decreased. It 

also caused upregulation of caspase 3 and PARP expression, resulting in hemorrhage, 

demyelination, and neuronal degeneration. Treatment of rats with TQ or EPO either alone or 

in combination improved histopathological changes through down-regulation of nestin, 

iBA1, iNOS, caspase 3 and PARP. It was concluded that EPO and TQ ameliorate the 

neurotoxic effect of VCR on the cerebrum, however, a synergetic effect was evident when 

TQ and EPO were combined. 
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INTRODUCTION 
 

Many medicinal plants contain 

alkaloids, including in doles (Singh and 

Singh, 2018), which can regulate cell death 

by targeting related signaling pathways 

(Song et al., 2021). Vincristine (VCR) is an 

indole alkaloid natural product that has FDA 

approval as an antitumor medication and is 

used as the first line of cancer treatment 

(Patridge et al., 2016). These agents are 

however limited in their use due to their 

significant side effects on the nervous 

system and bone marrow (Jordan, 2002). 

Indole alkaloids target cancer cells by 

different mechanisms, including autophagic 

cell death and apoptosis (Qin et al., 2022). 
 

Apoptosis is an important target in cancer 

treatment and it has become an important 

component of the development and 

discovery of novel anticancer (Wang et al., 

2018). The treatment consists of mollifying 

chemotherapy and corresponds to the 

treatment of extensive-stage small-cell lung 

cancer (Olsen et al., 2012). PARP-1 is a 

nuclear protein and has a wide range of 

pathological and physiological functions. 

PARP-1 plays important roles in astrocyte 

regulation, microglial function, and long-

term memory and aging (Chaitanya et al.,  

2010). PARP-1 is cleaved by caspases which 

are considered a mark of apoptosis 

(Kaufmann et al., 1993). Therefore, it was 

hypothesized that the use of both caspase 

and PARP inhibitors could be a crucial 

therapeutic in disorders where both necrosis 

and apoptosis occur (Los et al., 2002). 
 

Erythropoietin (EPO) is a glycoprotein 

consisting of 166 amino acids produced by 

the kidney and acts as both a hematopoietic 

growth factor and a peptide hormone that 

stimulates bone marrow erythropoiesis and 

has several roles outside the bone marrow 

(Lund et al., 2014). Recombinant human 

EPO could pass through the blood-brain 

barrier (Brines et al., 2000), so investigators 

are concerned with studying its role in the 

nervous system. The EPO receptor (EPOR) 

is expressed in several tissues, including 

endothelial cells and astrocytes in the CNS, 

that can produce and secrete EPO (Messé et 

al., 2013). Furthermore, EPO has been found 

to be a regenerative or protective hormone 

that can enhance neurological illnesses 

(Nekoui & Blaise, 2017). 
 

Thymoquinone (TQ), which is the 

phytochemical bioactive constituent of 

Nigella sativa seeds, has high anti-

inflammatory, anticancer, antioxidant, and 

neuroprotective properties (Kooti et al.,  

2016). TQ is a promising medication for 

reducing chemotherapy toxicity 

(AbuKhader, 2013). TQ showed anticancer 

properties since it prevents oxidative stress 

and inflammation, inhibits metastasis and 

angiogenesis, induces apoptosis, stimulates 

the expression of tumor suppressor genes 

and reduces the expression of tumor-

promoting genes (Alhmied et al.,  2021). 
 

This study aims to estimate the 

neuroprotective efficacy of TQ, EPO, and 

their combination against VCR-induced 

cerebral toxicity in rats. 
 

MATERIALS AND METHODS 
 

1. Ethics approval 

The animal procedures were approved by 

MBRSI- Research Ethics Committee 

number IORG0010947-MB-21-6-A. 
 

2. Animals 

Fifty male albino rats (180±20g) were 

purchased from the Animal House 

Laboratory, Department of Pathology& 

Clinical Pathology, Faculty of Veterinary 

Medicine, Assiut University. All rats were 

housed and adapted for two weeks before the 

experiment at room temperature with a 

normal light/dark cycle with free access to 

food and water.  

3. Chemicals 

TQ (Sigma Aldrich, MO, USA), Vincristine 

sulfate (Hikma Pharmaceuticals, Giza, 

Egypt), and Human recombinant EPO 

(SEDICO, 6th October City, Egypt) were 

used. Rabbit polyclonal primary antibody 

against PARP was purchased from 

Invitrogen (Carlsbad, CA), β-actin and 
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cleaved caspase-3 were obtained from 

Abcam (Cambridge, UK), Iba-1 from 

Fujifilm Wako Chemicals (VA, USA), 

synaptophysin from SYSY (Goettingen, 

Germany), NOS-2/iNOS from Bioss (MA, 

USA). Mouse monoclonal antibody against 

nestin (10-c2) was purchased from Santa 

Cruz (TX, USA). Horseradish peroxidase 

(HRP) conjugated goat anti-rabbit IgG was 

from Santa Cruz.  
 

4. Experimental design 

The rats were randomly divided into 5 

groups(n=10): Group I (control group) only 

received saline; Group II (VCR group) was 

treated with VCR (150μg/kg, intraperitoneal 

(IP) 3 times weekly for the entire experiment 

(Ja’afer, Hamdan, & Mohammed, 2006); 

Group III (EPO group) received VCR + EPO 

(80μg/kg, IP) (Kassem, El-Din, & Yassin, 

2011); Group IV (TQ group) received VCR 

+ TQ (10mg/kg, oral)(Mehri et al., 2014); 

and Group V (EPO+ TQ group) received 

VCR + EPO and TQ. All rats were observed 

for 5 weeks and then sacrificed. Brain 

specimens were collected for subsequent 

analyses (histopathology, immunohisto-

chemistry, and western blot). 
 

5. Histopathological examination 

Tissue samples were collected, fixed in 10% 

neutral-buffered formalin, routinely 

processed, and embedded in paraffin wax. 

Paraffin-embedded tissues were then 

sectioned at 5 μm thickness and stained with 

hematoxylin and eosin (Suvarna, Layton, & 

Bancroft, 2018). The slides were then 

examined microscopically (Olympus CX31, 

Japan) and photographed (Olympus, 

Camedia C-5060, Japan). Histopathological 

scoring was performed based on the blood 

vessel congestion, hemorrhage, neuronal 

degeneration, and demyelination from three 

random sections.  
 

6. Immunohistochemical examination 

The paraffin sections were deparaffinized, 

rehydrated with graded ethyl alcohol, and 

washed (3 times, 5 min each) with PBS. 

Antigen retrieval was carried out by boiling 

the slides for 10 min in 1 mM sodium citrate 

buffer (pH 6). The endogenous peroxidase 

activity was quenched with 3% H2O2 for 25 

min at 37°C, then the sections were washed 

with PBS and incubated with 10% normal 

goat serum in 0.2% Triton-X 100 /PBS at 

37°C for 2 h to block nonspecific reactions. 

The sections were incubated with the 

primary antibodies overnight at 4°C, rinsed 

with PBS (3 times, 10 min), and then treated 

with the Ultra Tek HRP anti-polyvalent kit 

(Goat anti-mouse, rat, rabbit and Guinea pig 

IgG) as a secondary antibody which 

(ScyTek, USA). Visualization of the 

reactions was done with DAB for 5-10 min 

and counterstained with Harris hematoxylin 

(Attaai et al.,  2022). 
 

7. Western blot analysis 

Tissue homogenates were centrifuged at 

1500 rpm for 5 min at room temperature, the 

pellets were washed with ice-cold PBS 

buffer (2 times), then the cells were lysed 

with cold RIPA buffer (5 mM EDTA, 50 

mMTris-Cl [pH 7.6], 150 mM NaCl, 0.5% 

Triton-X-100, and 0.5% NP-40) containing 

1 μg/mL aprotinin and leupeptin, and 0.5 

mM PMSF. The lysates were centrifuged at 

4°C for 10 min at 2500 rpm. Then the protein 

concentrations were determined by Bradford 

assay. 40 μg of the protein aliquots were 

electrophoresed on 10% SDS–PAGE gels 

and then transferred onto nitrocellulose 

membranes. Membrane blocking was done 

using 2% BSA and then probed with primary 

antibodies (anti-PARP, anti-cleaved-

caspase3, and anti-β-actin, 1:1000) at 4°C 

overnight. Then membranes were incubated 

with the HRP-conjugated secondary 

antibody (1:10,000) for 1 h at room 

temperature. ECL substrate was used for 

detection. The immunoreactive bands were 

densitometrically calculated using Image J 

software (Fouad, Elsokkary, & Shakor, 

2022). 
 

8. Statistical analysis 

Results are presented as means ± standard 

deviation (SD) of three independent 

replicates. One-way analysis of variance 

(ANOVA) followed by Newman-Keuls 

post-test (Keuls, 1952; Newman, 1939) was 
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used to evaluate the differences between the 

tested groups. The results were considered 

statistically significant at p < 0.05. 
 

RESULTS 
 

1. Histopathological evaluation 

Histopathological analysis of the brain 

sections from the control group showed the 

normal morphological structure of neurons, 

blood vessels, and glial cells in the cerebrum 

(Fig 1a). In contrast, brain sections from 

group II (VCR group) showed 

neurodegeneration with aggregation of glial 

cells around the degenerated neurons 

(satellitosis) (Fig 1b), significant 

demyelination in white matter and 

congestion of blood vessels (Fig 1c) in the 

cerebrum. 

 

However, the administration of EPO or TQ 

as single (group III or IV, respectively) or in 

combination (group V) showed ameliorative 

effects on the pathological changes caused 

by VCR in the cerebrum which appeared 

more or less normal (Fig 1d,e, f). All 

histopathological results of the brain in 

different groups were scored in Table 1. 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: Photomicrograph of the cerebrum from different groups. A. The control group shows 

normal neurons (arrows), glial cells (arrowhead), and blood vessels (asterisk). B and C. 

VCR group shows neuronal degeneration with satellitosis (arrow, B), neuronal 

degeneration (arrow, C), congestion (asterisk, C), and severe demyelination (inset, C). D. 

EPO group and E. TQ group show normal neurons with mild neuronal degeneration. F. 

EPO+TQ group shows normal neurons. H&E stain, scale bars = 20 μM. 

  



 

Assiut Veterinary Medical Journal                                             Assiut Vet. Med. J. Vol. 69 No. 179 October 2023, 172-185 

 

176 

Table 1: Scoring of histopathological results of the brain tissue in various groups. 

Histopathological findings Control VCR VCR+EPO VCR+ TQ VCR+ 

EPO+TQ 

Blood vessels Congestion  -ve +++ ++ +++ ++ 

Hemorrhage -ve +++ +++ ++ +++ 

Neuronal degeneration -ve +++ + ++ + 

Demyelination -ve +++ + ++ + 

Intensity scores:-ve=Not found,+=Mild, ++=Moderate,+++= severe 

 

2. Immunohistochemical evaluation 

Glial and neuronal progenitors were marked 

with the expression of nestin. The intensity 

of IBA1 was lower in control rats and was 

increased in VCR-treated rats and almost 

returned to the normal control by treating 

rats with EPO or TQ or their combination 

(Fig 2). Nestin immunoreactivity was 

increased in the cerebral cortex of rats 

treated with VCR, however, was decreased 

in the brain of rats treated with TQ or EPO 

their combination (Fig 3). Activation of 

microglia usually occurs as an initial 

response of the CNS to several pathological 

stimuli to employ a cytotoxic function by 

releasing NO, ROS, or inflammatory 

cytokines. So, the intensity of iNOS 

immunoreactivity in the cerebral cortex of 

rat brains treated with VCR was increased, 

however, it was decreased almost to the 

normal control by co-treatment with TQ or 

EPO or their combination (Fig 4). 

Immunoreactivity of the pre-synaptic 

protein synaptophysin, the main protein of 

the synaptic membrane that plays an 

important role as a channel in synaptic 

vesicle exocytosis, was decreased in the 

cerebral cortex of rat brain treated with 

VCR, however, was increased in rats-

cotreated with EPO, TQ or their combination 

(Fig 5).

  

 
 

Fig. 2: Immunohistochemical iBA1 staining of cerebral cortex in rat brains. The intensity of 

the iBA1 was higher in VCR treated group compared with the control and co-treated rats 

with TQ or EPO or their combination. 
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Fig. 3: Immunohistochemical nestin staining of cerebral cortex in rat brains showing that the intensity 

of the nestin was higher in the VCR-treated group compared with the control and co-treated rats 

with TQ or EPO or their combination. 

 
Fig.4: Immunohistochemical iNOS staining of cerebral cortex in rat brains. The iNOS intensity (arrows) 

was higher in VCR treated group compared with the control and co-treated rats with TQ or EPO 

or their combination. 
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Fig.5: Immunohistochemical synaptophysin staining of cerebral cortex in rat brains. The synaptophysin 

intensity was lower in VCR treated group and co-treated rats with TQ or EPO or their combination 

compared with the control. 

 

3. Effect of VCR and co-treatment with TQ or EPO or their combination on the caspase-3 and 

PARP-1 cleavage in the brain of rat 

Although its role in DNA repair, over activation of PARP-1 in neuronal excitotoxicity  

caused induction of cell death. In the present experiment, as in Figs. 6 and 7, the western blot results 

showed an elevated level of caspase-3 and PARP-1 in the VCR-treated group compared to the control 

group. EPO or TQ or their combination with VCR showed a significant decrease in both caspase-3 and 

PARP-1 levels with the priority of the combination of TQ and EPO. 

 

 
Fig. 6: Western blot results of the cleaved caspase-3 in the brain of control and different treated groups. ß-

actin is taken as control. A: a representative Immunoblot of the cleaved caspase-3. B: The density 
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values were expressed in mean ± SEM (n=3) after normalization to the corresponding ß-actin bands. 

* and # P < 0.05 versus control and VCR groups; respectively. 

 

 

 
 

Fig. 7: Western blot results of PARP in the brain of control and different treated groups. ß-actin is taken 

as control. A: a representative Immunoblot of PARP and cleaved PARP. B: The density values 

were expressed in mean ± SEM (n=3) after normalization to the corresponding ß-actin bands. * 

and # P < 0.05 versus control and VCR groups; respectively. 
 

DISCUSSION 

 
The microtubules are an important component 

of the cytoskeleton that plays an important role 

in different eukaryotic cellular processes, such 

as cell division and growth (Desai & 

Mitchison, 1997). VCR as microtubule-

targeting agents are an important class of 

anticancer drugs because of their capacity to 

interact with tubulins (Y.-M. Liu, Chen, Lee, 

& Liou, 2014; Mitchison, 2012). Inhibition of 

microtubule formation causes mitosis arrest in 

the metaphase, by restricting the formation of 

a mitotic spindle. Moreover, VCR overlaps 

with both nucleic acid and protein synthesis by 

blocking the use of glutamic acid (Martino et 

al., 2018). In addition, VCR disrupts the active 

transport of proteins and other components 

within neurons (Carlson & Ocean, 2011). As 

shown in the present study, VCR-treated rats 

showed neuronal degeneration with 

aggregations of glial cells around the 

degenerated neurons with demyelination of 

white matter of the cerebrum. As a result of 

VCR binding to microtubules neurons die 

(Starobova & Vetter, 2017), because 

microtubules are necessary components of 

oligodendrocytes, which are responsible for 

myelination of nervous fibers (Lee & Hur, 

2020). Moreover, VCR caused mitochondrial 

damage (Canta et al.,  2015) by modulating 

mitochondrial absorption and concentration of 

Ca2+ (Islam et al., 2019), leading to increased 

exocytosis of neurotransmitters and activation 

of apoptosis (Marchi et al., 2018).  
 

In this study, histological improvement in the 

cerebrum of rats co-treated with either TQ, 

EPO or their combination was observed. 

rhEPO is known to have beneficial effects on 

non-motor symptoms associated with 

Parkinson's disease (Jang et al., 2014), 

suggesting that it could be used as a new 

method of treating brain disorders (Merelli et 

al., 2013). Also, TQ has been shown to protect 

brain tissue from oxidative stress induced by 

radiation (Ahlatci et al., 2014) and efficiently 

attenuated Aβ1-42-induced neurotoxicity in 

cortical neurons (Alhebshi et al., 2013). 

Therefore, TQ may be used to reduce the toxic 

effects of chemotherapeutic agents by 

inducing cell cycle arrest and the down-

regulating pro-apoptotic genes (Darakhshan et 

al., 2015), and initiating apoptosis via 
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activation of caspases-3 (Paramasivam et al., 

2012).  

Neurodegenerative disorders are frequently 

caused by dysregulated apoptosis, which 

causes increased or decreased cell death. The 

caspase activation which is typically present as 

inactive zymogen forms is one of the most 

frequent signaling cascades contributing to 

apoptosis. When it is activated, caspases 

initiate cell death by removing and activating 

effector caspases that drive the apoptosis 

process (Yakovlev & Faden, 2001). The 

cleavage of PARP-1 by caspases is the 

hallmark of apoptosis (Kaufmann et al., 1993). 

In this study, rats treated with VCR showed 

upregulation of cleavage caspase3 and 

cleavage PARP. The cleavage of PARP by 

caspase-3 has been involved in different 

neurological diseases e.g. Alzheimer's disease, 

cerebral ischemia, Parkinson's disease, 

multiple sclerosis, brain tumors, especially 

gliomas, and traumatic brain injury (Gilliams-

Francis et al., 2003; Lau et al., 2006). In 

normal conditions, the PARP-1 primary 

function is to detect DNA damage and to 

repair it. However, cells with significant DNA 

damage have increased PARP-1 activity, 

leading to high NAD+ consumption. This 

activity, if left unchecked, will inevitably 

result in passive necrotic cell death (caused by 

long ATP depletion). Rapid cleavage and 

inactivation of PARP-1 by caspases prevent 

this process from occurring. However, insults 

that initiate necrosis cause PARP-1 

overactivation which proceeds unchecked due 

to insufficient caspase activation (Aikin et al., 

2004; Los et al., 2002). 
 

However, rats co-treated with TQ, EPO or 

their combination showed a relative decrease 

in cleavage caspase 3 and cleavage PARP 

compared to the VCR-treated group. TQ-

specific inhibitory action on cancer cells is 

associated with activated caspase upregulation 

(Ashour et al., 2016). Caspase-3 reduction 

which ends up in the process of cell death, and 

PARP, one of the targets of caspase-3, 

supported the apoptosis-inhibiting effect of 

TQ in healthy tissue (Beker et al., 2018). 

Ethanol promoted caspase-dependent 

cleavage of PARP-1. Administration of TQ 

decreases DNA damage and inhibits cell death 

caused by ethanol in rat cortical neurons via an 

antioxidant mechanism that preserves 

mitochondrial integrity (Cherian et al., 2008; 

Ullah et al., 2012). Additionally, the treatment 

of TQ protected neurons from α-synuclein-

induced synaptic toxicity in cultured rat 

primary hippocampal and human-induced 

pluripotent stem cell-derived neuron cells 

(Alhebshi et al., 2014). 
 

The present results of immunohistochemistry 

showed increases in the expression of iBA1, 

nestin and iNOS, however, synaptophysin was 

decreased in the brains of rats treated with 

VCR. Co-treatment of rats with either TQ, or 

EPO, or their combination restores the levels 

of all except synaptophysin is still lower than 

controls.  In this aspect, Iba1 was found to be 

strongly expressed in activated microglia 

within the regenerating facial nucleus 

(Ohsawa et al., 2000). Iba1 expression could 

be associated with microglial activation (Ito et 

al., 2001) which usually occurs as an early 

response of the CNS against several 

pathological stimuli, such as; inflammation, 

trauma, ischemia, and degeneration. Microglia 

exert a cytotoxic function by releasing nitric 

oxide, reactive oxygen species, or 

inflammatory cytokines, which cause neuronal 

damage (González-Scarano & Baltuch, 1999; 

Moore & Thanos, 1996). 
 

In multipotent CNS precursor cells, nestin 

represents a novel class of intermediate 

filament that is highly expressed (Lendahl et 

al., 1990). The adult brain typically exhibits 

low levels of nestin immunoreactivity (Wei et 

al., 2002), while nestin upregulation has been 

found in the lesioned brain (Bond et al., 2002). 

Nestin is a marker for reactive astrocytes, 

which are important in the healing process of 

brain injury (Li & Chopp, 1999). Nestin is 

markedly induced in neuroinflammatory 

conditions in both astrocytes and activated 

microglia/ macrophages (Krishnasamy et al., 

2017). Post-injury nestin is highly expressed in 

both astrocytes and microglia, that are 

consistent with the hypothesis that injured 

cerebral tissue expressed developmental 

proteins, and that these proteins might aid in 

injury recovery (Korzhevskii et al., 2008). 
 

Synaptophysin, a calcium-binding glyco-

protein located in the membranes of 

presynaptic vesicles of neurons, is involved in 

synaptogenesis, vesicular trafficking, synaptic 

https://www.sciencedirect.com/topics/neuroscience/astrocyte
https://www.sciencedirect.com/topics/neuroscience/microglia
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reorganization, and the fusion of the vesicular 

with the synaptic plasma membrane (Südhof, 

1995). Synaptophysin is one of the most often 

utilized protein indicators of synaptic 

plasticity in the brain. The cognitive decline in 

Alzheimer’s disease is correlated with the loss 

of this pre-synaptic vesicle protein in the 

hippocampus (Counts et al., 2006; Reddy et 

al., 2005). Synaptophysin might be associated 

with nerve dysfunction induced by a traumatic 

brain injury (Liu et al., 2016). Resveratrol as 

an antioxidant may serve as a therapeutic 

strategy for traumatic brain injury via the 

upregulation of synaptophysin, and the 

inhibition of neuronal autophagy (Feng et al., 

2016). Activated glial cells produce more 

nitric oxide synthase (NOS) and RNS. 

(Tangpong et al., 2006) and causes DNA 

damage in neuronal cells (Abner & 

McKinnon, 2004). So, natural antioxidants, 

resveratrol and berberine demonstrated a 

reversion of harmful effects of chemotherapy-

induced neurotoxicity (Shaker et al.,  2021; 

Shi et al., 2018). Finally, (Was et al., 2022) 

concluded that neurotoxicity is induced 

through several (alone or in combination) 

modes of action: reduced neurogenesis and 

gliogenesis, direct injury of neurons, neuro-

inflammation and neuroendocrine changes, 

hyperactivation of supportive glial cells (e.g., 

microglia, astrocytes, satellite glial cells), and 

increased oxidative stress. Consequently, 

supplemen-tation with antioxidants may 

protect against the adverse effects of 

chemotherapy.  In conclusion, both EPO and 

TQ protect the cerebrum against the toxic 

effect of VCR by a mechanism dependent on 

down regulation of iNOS, IBA1, nestin, PARP 

and caspase 3 as mediators of oxidative stress, 

inflammation, and apoptosis, however, their 

combination gives more protection may be due 

to their synergetic effects. 
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  السمية العصبية الدماغية التي يسببها الفينكريستين :التأثير التحسيني للإريثروبويتين والثيموكينون عن  

 .Caspase 3و  PARPو  nestinو  IBA1و  iNOSطريق تنظيم بروتينات 

 
 ، حسام الدين  محمد عمر  ، محمود سليمان  ، أبو بكر عبد الشكور  ، منال محمد سيد ،  سحر أحمد

 ة حسام الدين عمر  ، ساري خليل عبد الغفارأمني
 

Email: saharabdelrahman000@gmail.com    Assiut University website: www.aun.edu.eg 

 
( هو المنظم EPOسامة للأعصاب. الإريثروبويتين )الجانبية ال هعلى الرغم من آثار ,للسرطان( دواء قوي مضاد VCRالفينكريستين )

يحمي خلايا الدماغ من الإجهاد  ة(  أحد مكونات حبة البركTQالثيموكينون ) الرئيسي لتكوين الكريات الحمراء في نخاع العظام .

ي  سمية الحالية للبحث ف تهدف الدراسة .الزهايمر ومرض باركنسونالتأكسدي الذي يسبب الاضطرابات العصبية التنكسية مثل مرض 

VCR  على الدماغ والتأثير الوقائي العصبي المحتمل لـEPO  وTQ  ضد سميةVCR  أدى الحقن داخل الغشاء الجرذانفي نموذج .

ى زيادة كبيرة في التعبير الجيني ميكروغرام / كجم( ثلاث مرات أسبوعياً لمدة خمسة أسابيع متتالية إل 150) VCRالبريتوني لـ 

 VCR. علاوة على ذلك ، تسبب synaptophysin،مصحوبا بانخفاض  للتعبير الجيني عن  iNOSو  iBA1و  nestinلبروتينات 

مع تغيرات نسيجية مرضية ملحوظة مثل النزف، والتنكس العصبي، وإزالة الميالين. كما اظهر  PARPو  caspase 3في زيادة  تعبير 

مجموعة على تحسين التغييرات السابقة من خلال انخفاض  يفمشتركين حدة او  ىسواء كلا عل TQاو  EPOالفئران باستخدام  ج علا

التأثير من ان خففي TQو  EPO. وقد خلصت النتائج الحالية إلى أن PARPو caspase 3و  iNOSو iBA1و nestinفي مستويات الـ 

 TQ .و EPOذلك ، كان التأثير التأزري واضحا عندما تم الجمع بين  علاوة علىوعلى المخ ،  VCRالسام العصبي لـ 
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