EVALUATION OF THE EFFECT OF SOME ANTIOXIDANTS FOR CONTROLLING AFLATOXICOSIS IN BROILER CHICKENS

YASMIN ALI HASSAN SADIEK 1; TOLBA YOUNIS ABD ELMOTELIB1; NASHWA HAMAD MOHAMED 2; ALAA ELDIN KAMAL YOUSSEF 3 AND OMAR AMEN1
1Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Assiut University, Egypt
2Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Egypt
3Food Hygiene Department, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Assiut University, Egypt

Received: 24 July 2022; Accepted: 28 August 2022

ABSTRACT

This study aimed to evaluate the ability of antioxidants (curcumin and lipoic acid) to ameliorate the hazardous effects of aflatoxins in broiler chickens in terms of performance, liver and kidney functions, and histopathological structures as well as compare them with the effect of a mycotoxin adsorbent (Agrimos®), a specific combination of mannan-oligosaccharides (MOS) and β-glucans extracted from the yeast cell walls of Saccharomyces cerevisiae. A total of 120 broilers were used and divided into 5 equal groups (n=24), each group subdivided into 2 replicates (12 birds/replicate). control negative (G1) received the basal diet, control positive (G2) basal diet+ 100µg AFB1/kg diet; Curcumin treated group (G3) received control Positive + 1 g Curcumin /kg diet ; Lipoic acid treated group (G4) received control Positive + 300 mg Lipoic acid /kg diet; Agrimos treated group (G5) received control Positive + 1 g Agrimos /kg diet. All treatments were administered from 1-30 days of age. By the end of the experiment, antioxidants (curcumin and lipoic acid) ameliorated the harmful effects of aflatoxin on performance, histopathology of target organs and serum biochemical parameters in broilers as the same degree of improvement induced by Agrimos® (mycotoxin binders).

Key words: aflatoxicosis; curcumin; lipoic acid; manan and betaglucan

INTRODUCTION

Aflatoxins are the forceful mycotoxin produced as secondary metabolites of Aspergillus spp including Aspergillus flavus, Aspergillus paraciticus, Aspergillus nomius and others. Aflatoxins are dangerous to the health of humans and animals due to their teratogenic, carcinogenic, mutagenic, and immunosuppressive effects. In addition, aflatoxins cause massive financial loss by delaying animal growth and decreasing meat production (Khetmalis et al., 2018). There are four aflatoxins produced naturally, B1, B2, G1, and G2. Aflatoxin B1 (AFB1) is the greatest shared in feed and is said to be the most biologically active form causing genotoxicity, cytotoxicity and oxidative stress (El-Nekeety et al., 2017). Aflatoxins elimination from feedstuff remains one of the main tasks in animal production; this...
may be due to the heat stability of aflatoxin or due to other physical conditions that limit the use of these forms of inactivation (Neeff et al., 2018). Upon consumption, AFB1 is absorbed in the duodenum and reaches the liver where it is bio-activated by the action of cytochrome enzymes (CYP450) (Benkerroum, 2020). Aflatoxins have been stated to produce oxidative stress owing to the generation of free radicals and reactive oxygen species (ROS) which are considered participating in the main mechanism of aflatoxin toxicity (Neeff et al., 2018). There is sufficient evidence suggesting that antioxidants improve oxidative stress during mycotoxicosis by reducing the level of free radicals (Neeff et al., 2018). Curcumin is a potent inhibitor of oxidative stress, acting as a direct free radicals hunter and eliminating superoxide and peroxide (Vallianou et al., 2015). Lipoic acid (LA) is a metal chelator that hunt several types of free radicals and regenerates other antioxidants, such as vitamin E and glutathione (GSH) (Li et al., 2014). Manno-oligosaccharides (MOS) and β-glucans have been proposed as a mycotoxin binder for inhibiting the adverse effects of mycotoxins in poultry feeds (Mustafa et al., 2018) (Anwer et al., 2014).

MATERIALS AND METHODS

Experimental Chickens:
One hundred and twenty Arbor Acres broiler chicks (one day old) were obtained from a marketable company for poultry in Egypt. Chicks were raised in litter under standard environmental and hygienic conditions and were fed on a balanced basal ration formulated according to NRC (NRC, 1994) (Table 1). Feed and water were given ad libitum. All birds were vaccinated against Newcastle disease and IBD disease at suitable times.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Starter %</th>
<th>Grower **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>28.1</td>
<td>28.1</td>
</tr>
<tr>
<td>Corn grain</td>
<td>28.1</td>
<td>33</td>
</tr>
<tr>
<td>Soyabean 44% protein</td>
<td>33.5</td>
<td>30</td>
</tr>
<tr>
<td>Corn gluten</td>
<td>4.5</td>
<td>3</td>
</tr>
<tr>
<td>Sunflower oil</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Lime stone</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Mono-calcium phosphate</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>L-Lysine</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

* A starter diet was fed up to 21 d. ** A grower diet was fed up to 30 d.

Aflatoxin production and determination
The aflatoxin was produced from Aspergillus flavus strain (AUMC No.9779) and was obtained from Assiut University Moubasher Mycological center (AUMMC), Faculty of Sciences, Assiut University, Egypt via fermentation of rice by the

Agrimos® is a specific combination of manno-oligosaccharides (MOS) and β-glucans extracted from the yeast cell walls of Saccharomyces cerevisiae. The objective of the current study was to study the adverse effects of aflatoxicosis on performance and serum biochemical parameters in addition to pathological alterations. Also, to estimate the protective effect of antioxidants (curcumin and lipoic acid) and mycotoxin binder (Agrimos®) against chronic aflatoxicosis in broilers.
technique of Shotwell et al. (1966). Successfully fermented rice was then autoclaved to destroy the fungus, dried and crushed to a fine powder. Aflatoxin levels in rice powder were measured by HPLC method in the Central Lab of the Faculty of Veterinary Medicine at Assiut University. The aflatoxin within the rice powder consisted of 97.19% AFB1, and 2.8% AFB2. Crushed rice was added to the basal diet to offer (100 ppb) according to Abdel-Sattar et al. (2019).

Treatments:
1. Curcumin powder (C_{21}H_{20}O_{6}):
 Molecular weight 368.39 g/mole. It was bought from a research lab company introduced from India LOT#00088EERF98, it was added to the diet in a dose rate of 1g/kg diet according to (Ruan et al., 2019).

2. Alpha-Lipoic acid (Thiotacid tablets):
 Each tablet contains (alpha-lipoic acid) 300 mg/tablet, manufactured by EVA Pharma for pharmaceuticals and medical appliances, Egypt. Each tablet was added to a 1 kg diet according to (Mourad et al., 2020).

3. Agrimios: is a specific combination of mannans-oligosaccharides (MOS) and β-glucan extracted from the yeast the cell wall of Saccharomyces cerevisiae from Lallemand animal nutrition, it was added to the diet at a dose rate of 1 g/kg diet according to the manufacturing company.

Experimental Design:
A total number of chicks (120) were divided into five groups (n = 24) each group with two replicates. The experimental dietary groups included: control negative (G1) received the basal diet, control positive (G2) basal diet+ 100µg AFB1/kg diet; Curcumin treated group (G3) received as control Positive + 1 g Curcumin/kg diet; Lipoic acid treated group (G4) received as control Positive + 300 mg Lipoic acid/kg diet; Agrimios treated group (G5) received as control Positive + 1 g Agrimios /kg diet. All treatments were administered from 1-30 days of age.

Health condition: Birds were reserved under remark for 30 days for the detection of any clinical signs.

Growth Performance and post-mortem examination: Body weight was individually determined on weekly basis. Body weight gain, feed consumption and feed conversion ratio (FCR) were calculated for the whole experimental period (Shehab 2008). Post-mortem examination of all birds was conducted after sacrificing at the end of the experimental period for any gross lesions.

Biochemical examinations:
Blood samples were collected in non-heparinized tubes at 21th and 30th days of the experiment. Sera were separated and kept at -18°C till usage. The separated sera were analyzed for Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) which were determined spectrophotometrically according to IFCC, (1986) using commercial kits supplied by Spectrum, Cairo, Egypt. Gamma-glutamyl transpeptidase enzyme (GGT) was determined spectrophotometrically according to the method described by Szasz and Persij, (1974) using a commercial kit supplied by Spectrum, Cairo, Egypt. Total protein, albumin, creatinine and urea were determined colorimetrically according to the method described by Kaplan and Szalbo (1983) using a commercial kit supplied by Spectrum, Cairo, Egypt.

Histopathological examination: Fresh tissue specimens were taken from the liver, kidney, spleen and bursa of Fabricius and fixed in 10 % neutral buffered formalin. The tissue processing and the staining procedure of tissue sections were applied according to Scheuer and Chalk, (1986).

Statistical analysis
Differences among groups were investigated by using One-Way ANOVA followed by
Duncan's multiple comparison Post Hoc tests (Duncan, 1955). Statistical analysis was carried out using the statistical software package SPSS for Windows (version 2016; SPSS Inc., Chicago, IL, USA). Statistical significance between mean values was set at P< 0.05.

RESULTS

Health condition:
The AF intoxicated chicks showed different degrees of depression; their excreta passed semisolid (soft) and loose droppings (pasty vent). They exhibited ruffled and broken feathers, abnormal wing feathers, and irregular gait from the first week till the end of the experiment. A notable improvement in the above-mentioned signs was detected in the treated groups.

Performance parameters and post-mortem findings:
Sacrificed chickens of control negative and all treated groups showed no observable gross muscle changes. Aflatoxicated birds (G2) exhibited severe congestion and petechial hemorrhages of thigh and breast muscles (Figure 1). Livers of these aflatoxicated birds were enlarged, friable and pale-discolored with subcapsular hemorrhages and distended gall bladder. Livers of curcumin- and lipoic acid- treated groups showed mild subcapsular haemorrhages, whereas those of Agrimos® were pale in color (Figure 2). Kidneys of aflatoxicated birds showed enlargement, pallor, hemorrhages and distended ureters with ureate, whereas birds of treated groups showed only mild enlargement (Figure 3).

Figure 1: Gross lesions of muscles of 30 days old boilers fed with an aflatoxin-contaminated diet (G2). A) Showing congested breast muscle. B) Showing petechial haemorrhages on the thigh muscle. C) Showing petechial haemorrhages on breast muscle.

Figure 2: Gross lesions of livers of 30 days old boilers of normal control and other experimental groups. A) Control negative group (G1) showing normal gross liver appearance. B) Control positive group (G2) showing pale-colored and friable liver with severe subcapsular hemorrhages. C) Curcumin-treated group (G3) and D) Lipoic acid treated group (G4) showing mild subcapsular hemorrhages (arrows). E) Agrimos® treated group (G5) showed pale colored liver.
Figure 3: Gross lesions of kidneys of 30 days old boilers of normal control and other experimental groups. A) Control negative group (G1) showing normal kidney gross appearance. B) Control positive group (G2) showing enlarged and haemorrhagic kidney. C) Curcumin-treated group (G3), D) Lipoic acid treated group (G4) and E) Agrimos® treated group (G5) showing mildly enlarged kidney.

Performance parameters:
Table (2) provides the data on the body weight of chicks during the experiment and Table (3) provides the data on the feed conversion ratio.

From Tables 2 and 3 it is important to note that:
At the end of the experiment (4th Week), there was a significant increase in body weight in the curcumin-treated group (G3) (914.67±8.57) and Agrimos®-treated group (G5) (915±28.71) when compared with the control positive group (G2) (838.5±17.87). While there was a significant decrease in aflatoxicated groups when compared with the control negative group (G1) (1023.5±17.25).

At the end of the experiment, there was a significant decrease (P<0.05) of FCR in the curcumin-treated group (G3), lipoic acid-treated group (G4) and agrimos®-treated group (G5) when compared with the control positive group (G2).

Table 2: Effect of the compounds used as feed additives on body weight of the broiler chickens challenged with 100 ppb aflatoxins.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Day 0</th>
<th>1st Week</th>
<th>2nd Week</th>
<th>3rd Week</th>
<th>4th Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control negative</td>
<td>46.6±0.62a</td>
<td>146.32±2.71a</td>
<td>362.8±9.58a</td>
<td>629.1±19.05a</td>
<td>1023.5±17.25a</td>
</tr>
<tr>
<td>2</td>
<td>Control positive</td>
<td>45.33±0.52a</td>
<td>125±2.11b</td>
<td>303.08±14.26c</td>
<td>500.8±22.50c</td>
<td>838.5±17.87c</td>
</tr>
<tr>
<td>3</td>
<td>Curcumin 1 gm</td>
<td>46.93±0.54a</td>
<td>131.38±2.53b</td>
<td>322.5±9.5abc</td>
<td>540.4±13.67bc</td>
<td>914.67±8.57b</td>
</tr>
<tr>
<td>4</td>
<td>Lipoic acid 300 mg</td>
<td>45.6±0.76a</td>
<td>124.92±3.33b</td>
<td>315±11.49bc</td>
<td>503.4±22.31c</td>
<td>869.5±7.71bc</td>
</tr>
<tr>
<td>5</td>
<td>Agrimos® 1 gm</td>
<td>46.4±0.77a</td>
<td>127±2.9b</td>
<td>343.62±8.9ab</td>
<td>573±9.81b</td>
<td>915±28.71b</td>
</tr>
</tbody>
</table>

“a, b & c”: There is a significant difference (p<0.05) between any two means, within the same column that have different superscript letters, values are expressed as mean ± standard errors.
Table 3: Effect of the compounds used as feed additives on the feed conversion ratio of the broiler chickens challenged with 100 ppb aflatoxins.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>1st Week</th>
<th>2nd Week</th>
<th>3rd Week</th>
<th>4th Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control negative</td>
<td>0.948±0.00a</td>
<td>1.18±0.01b</td>
<td>1.58±0.01b</td>
<td>1.81±0.05d</td>
</tr>
<tr>
<td>2</td>
<td>Control positive</td>
<td>1.14±0.01a</td>
<td>1.48±0.02a</td>
<td>2.17±0.07a</td>
<td>2.59±0.09a</td>
</tr>
<tr>
<td>3</td>
<td>Curcumin 1 gm</td>
<td>1.07±0.01b</td>
<td>1.4±0.01ab</td>
<td>1.7±0.04b</td>
<td>2.23±0.03b</td>
</tr>
<tr>
<td>4</td>
<td>Lipoic acid 300 mg</td>
<td>1±0.02c</td>
<td>1.35±0.03bc</td>
<td>1.65±0.04b</td>
<td>1.97±0.02cd</td>
</tr>
<tr>
<td>5</td>
<td>Agrimos® 1 gm</td>
<td>1.04±0.01bc</td>
<td>1.28±0.02c</td>
<td>1.67±0.02b</td>
<td>2.15±0.05bc</td>
</tr>
</tbody>
</table>

a, b & c*: There is a significant difference (p<0.05) between any two means, within the same column that have different superscript letters, values are expressed as mean ± standard errors.

Biochemical changes:
Liver function tests: The effects of aflatoxin, curcumin, lipoic acid and agrimos on liver function were evaluated and presented in table (4). On day 21, there was a significant increase (p<0.05) in ALT, AST and GGT (57±1.7, 39±17.1 and 29.3±1.08), respectively, in the control positive group (G2) when compared to the control negative group (G1) (36.3±0.7, 78.6±7.1 and 9.1±1.5). Also ALT, AST and GGT were significantly decreased (p<0.05) in curcumin and Agrimos treated groups when compared to the control positive group, whereas the lipoic acid treated group showed a significant decrease (p<0.05) in ALT and AST only in comparison with control positive group.

At the end of the experiment (30 days), there was a significant increase (p<0.05) in ALT, AST and GGT in the control positive group (G2) when compared to the control negative group (G1). Curcumin-treated group showed significantly decreased of ALT, AST and GGT (p<0.05) when compared to the control positive group. But lipoic acid and Agrimos treated groups revealed a significant decrease (p<0.05) in ALT and GGT only in comparison with the control positive group.

Table 4: Effect of the compounds used as feed additives on liver enzymes in the broiler chicken challenged with 100 ppb aflatoxins.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>ALT(U/L) 21st day</th>
<th>ALT(U/L) 30th day</th>
<th>AST(U/L) 21st day</th>
<th>AST(U/L) 30th day</th>
<th>GGT(U/L) 21st day</th>
<th>GGT(U/L) 30th day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control negative</td>
<td>36.3±0.7c</td>
<td>33.8±0.6c</td>
<td>78.6±7.1b</td>
<td>91.1±2.4c</td>
<td>9.1±1.5c</td>
<td>13.5±0.6b</td>
</tr>
<tr>
<td>2</td>
<td>Control positive</td>
<td>57±1.7a</td>
<td>47.7±1.2a</td>
<td>139±17.1a</td>
<td>144.5±1.9a</td>
<td>29.3±1.08a</td>
<td>21±0.9a</td>
</tr>
<tr>
<td>3</td>
<td>Curcumin 1 gm</td>
<td>35.6±0.7c</td>
<td>35.4±1.7bc</td>
<td>83±3.7b</td>
<td>116.3±1.6b</td>
<td>15.7±3.1bc</td>
<td>14.6±0.8b</td>
</tr>
<tr>
<td>4</td>
<td>Lipoic acid 300 mg</td>
<td>43.4±1.8b</td>
<td>39.1±2.2bc</td>
<td>99.1±13.3b</td>
<td>131.3±1.6ab</td>
<td>20.3±5.4ab</td>
<td>14±2.7b</td>
</tr>
<tr>
<td>5</td>
<td>Agrimos® 47±1.1b</td>
<td>40.6±3.0b</td>
<td>76±13.9b</td>
<td>132.3±10.9ab</td>
<td>13±0.3bc</td>
<td>12.2±1.2b</td>
<td></td>
</tr>
</tbody>
</table>

a, b & c*: There is a significant difference (p<0.05) between any two means, within the same column that have different superscript letters, values are expressed as mean ± standard errors.
Kidney function tests: The effects of aflatoxin, curcumin, lipoic acid and Agrimos on kidney function were evaluated and presented in Table (5).

At 21 day, there was a significant increase (p<0.05) in serum urea and creatinine levels in the control positive group (G2) when compared to the control negative group. There was a non-significant difference in urea levels of all treated groups (G3, G4, G5) when compared to the control positive group (G2), but there was a significant decrease in creatinine in both curcumin and Agrimos treated group.

At the end of the experiment (30 days), there was a significant increase (p<0.05) in serum urea and creatinine levels in the control positive group (G2) when compared to the control negative group. Agrimos treated group showed a significant decrease in both urea and creatinine levels but curcumin and lipoic acid treated groups only showed a significant decrease in creatinine level only without any significant difference in serum urea levels.

Table 5: Effect of the compounds used as feed additives on serum urea and serum creatinine levels in the broiler chicken challenged with 100 ppb aflatoxins.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>Urea (mg/dl)</th>
<th>Creatinine(mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>21st day</td>
<td>30th day</td>
</tr>
<tr>
<td>1</td>
<td>Control negative</td>
<td>9.1±0.39b</td>
<td>11.59±0.62b</td>
</tr>
<tr>
<td>2</td>
<td>Control positive</td>
<td>14.1±0.82a</td>
<td>18.1±1.02a</td>
</tr>
<tr>
<td>3</td>
<td>Curcumin 1 gm</td>
<td>10.9±1.01ab</td>
<td>19.4±0.32a</td>
</tr>
<tr>
<td>4</td>
<td>Lipoic acid 300 mg</td>
<td>12.4±2.18ab</td>
<td>18.1±1.74a</td>
</tr>
<tr>
<td>5</td>
<td>Agrimos®</td>
<td>14.5±1.17a</td>
<td>13.5±1.35b</td>
</tr>
</tbody>
</table>

a, b & c”: There is a significant difference (p<0.05) between any two means, within the same column that have different superscript letters, values are expressed as mean ± standard errors.

Serum proteins:

As clarified in table 6, on the 21st day of experiment, intoxicated chicks in the control positive group (G2) showed a significant decrease (p<0.05) of total protein and albumin concentrations when compared to the control negative group G1. The use of curcumin, lipoic acid and Agrimos as feed additives displayed a significant increase (p<0.05) in total protein and albumen concentrations when compared to the control positive group G2.

At the end of the experiment (30th day), intoxicated chicks in the control positive group (G2) showed a significant decrease (p<0.05) in total protein and albumin concentrations when compared to the control negative group G1. The use of curcumin as feed additives showed a significant increase (p<0.05) in total protein and albumen concentrations when compared to control positive group G2. Using lipoic acid and Agrimos as feed additives revealed a significant increase (p<0.05) in total protein concentrations when compared to control positive group G2 but showed no significant difference in albumen concentrations in comparison with control positive group G2.
Table 6: Effect of the compounds used as feed additives on serum urea protein levels in the broiler chicken challenged with 100 ppb aflatoxins.

<table>
<thead>
<tr>
<th>G</th>
<th>Treatment</th>
<th>Total protein (g/dl)</th>
<th>Albumen (g/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>21st day</td>
<td>30th day</td>
</tr>
<tr>
<td>1</td>
<td>Control negative</td>
<td>3.6±0.08a</td>
<td>4.9±0.14ab</td>
</tr>
<tr>
<td>2</td>
<td>Control positive</td>
<td>2.7±0.08b</td>
<td>2.8±0.54c</td>
</tr>
<tr>
<td>3</td>
<td>Curcumin 1 gm</td>
<td>3.5±0.16a</td>
<td>4.7±0.33ab</td>
</tr>
<tr>
<td>4</td>
<td>Lipoic acid 300 mg</td>
<td>3.4±0.08a</td>
<td>5.3±0.22a</td>
</tr>
<tr>
<td>5</td>
<td>Agrimos®</td>
<td>3.6±0.21a</td>
<td>4.1±0.39b</td>
</tr>
</tbody>
</table>

a, b & c*: There is a significant difference (p<0.05) between any two means, within the same column that have different superscript letters, values are expressed as mean ± standard errors.

Histopathological findings:
Liver sections of the control negative group (G1) revealed a normal histomorphological appearance of hepatic parenchyma. The control positive group (G2) showed marked changes in the form of extensive vascular congestion, hemorrhage, diffuse mononuclear cellular infiltration and widespread hepatocyte necrosis. Liver sections of birds of treated groups (G3, G4, and G5) displayed noticeable improvement of hepatic parenchymal architecture with mild vascular congestion (Figure 4).

Figure 4: Photomicrograph showing histopathological changes of liver tissues of control negative and other experimental groups. A) Control negative group showing normal histological criteria of the hepatic parenchyma. (B-C) Showing control positive group. B) Vascular congestion (star) and diffuse mononuclear cells infiltration (arrow). C) Diffuse hepatocytes necrosis (arrow) and hemorrhage (notched arrow). (D-F) treated groups (G3, G4, G5) showing mild vascular congestion (arrow) (H&E, bar= 50µm).
Microscopical examination of kidney sections from the control negative group (G1) showed a normal histological appearance. Control positive group (G2) revealed diffuse tubular necrosis, mononuclear cells infiltration and cortical fibrosis. G3, G4, and G5 showed marked improvement of the kidney parenchyma with only mild changes which were represented by coagulative necrosis of some cortical tubules (Figure 5).

Figure 5: Photomicrograph showing histopathological changes of kidney tissues of control negative and other experimental groups. A) Control negative group showing normal histological appearance. B) Control positive group showing diffuse tubular necrosis (green arrow), mononuclear cells infiltration (black arrow) and cortical fibrosis (red arrow). C) G3 showing coagulative necrosis of individual renal tubules (arrow). D) G4 showing mild vascular congestion (star) and coagulative necrosis of individual tubule (arrow). E) G5 showing a focal area of necrosis (arrow) (H&E, bar= 50µm).

Spleen tissue sections of the control negative group (G1) showed a normal appearance of white and red pulps. Control positive group (G2) revealed marked lymphoid necrosis and depletion as well as fibrosis. G3 showed perivascular fibrosis and lymphoid depletion. Mild depletion of the lymphoid elements of white and red pulps was observed in G4 and G5 (figure 6).
Figure 6: Photomicrograph showing histopathological changes of spleen tissues of control negative and other experimental groups. A) Control negative group showing normal histological appearance. (B-C) Control positive group showing lymphoid depletion (notched arrow) and fibrosis (arrow). D) G3 showed perivascular fibrosis (arrow) and lymphoid depletion (notched arrow). E) G4 showing mild depletion of the lymphoid elements of the red pulp (notched arrow). F) G5 showing mild lymphoid depletion of white (star) and red pulp (notched arrow) (H&E, bar= 50µm).

Tissue sections of the bursa of Fabricius of the control negative group (G1) showed normal histological appearance. Control positive group (G2) displayed marked depletion of the lymphoid follicles. G3 and G4 showed moderate depletion of the lymphoid follicles. Mild depletion of the lymphoid elements and edema of the interfollicular connective tissue were observed in G5 (Figure 7).
Figure 7: Photomicrograph showing histopathological changes of the bursa of Fabricius of control negative and other experimental groups. A) Control negative group showing normal histological appearance. B) Control positive group showing marked depletion of the lymphoid follicles (star). C) G3 and D) G4 showed moderate depletion of the lymphoid follicles (arrow). E) G5 showing Mild depletion of the lymphoid elements (blue arrow) and edema of the interfollicular connective tissue (yellow arrow) (H&E, bar= 50µm).

DISCUSSIONS

Mycotoxins are well-thought-out as unavoidable contaminants in diets all over the world. Aflatoxins are the most common mycotoxin in poultry ration (Surai and Mezes, 2005). Our findings of clinical signs in aflatoxicated group and aflatoxicated treated groups (G3, G4 and G5) were well-matched with Ashry et al. (2022); Hussain et al. (2016) and Mourad et al. (2020) who observed clinical signs in the form of stunted growth, foot, wing paralysis, lameness and diarrhea although using the previously treated compound decrease the severity of clinical signs for some extent.

Our results of post-mortem lesions in both aflatoxicated (G2) and aflatoxicated treated groups (G3, G4 and G5) were in agreement with Fani Makki et al. (2013); Lande et al. (2019) and Sharma and Singh (2019) who reported that aflatoxicated groups had enlarged, pale yellow colored liver with friable consistency and occasional necrotic foci. Kidneys of birds from aflatoxicated groups were enlarged, pale and hemorrhagic with distinct lobulations.
One of the most economic effects of AFB1 in broilers is the diminution of performance parameters (Resanovic et al., 2009). In the current study, the administration of 100 ppb in the control positive group (G2) showed a significant decrease in body weight and a significant increase in feed conversion ratio when compared with the control negative from 1st week till the end of the experiment (4th week). Our results are in agreement with Magnoli et al. (2017); Abdelnaser et al. (2017); Arafat et al. (2017); Salema et al. (2018); Abdel-Sattar et al. (2019); Kurniasih and Prakoso, (2019) and Lin et al. (2022) who noticed that AFB1(100ppb) diminished daily weight gain and average daily feed intake, causing growth retardation of broilers, the harmful effect on growth parameters of broiler chicken may be caused as a result of diminishing of protein synthesis by aflacotoxins. The addition of curcumin 0,1 % or Agrimos® 0,1 % to the diet contaminated with 100 ppb aflatoxin significantly alleviated its adverse effects on these performance parameters. This result matched with Gowda et al, (2008) who found that the addition of turmeric powder at a dose of 74 mg /kg diet to the AFB1(1000 ppb) diet significantly enhanced weight gain, and with Cruz et al. (2019) who reported that the addition of curcumin (0.2%) to the diet containing Afla toxin significantly reduced its adverse effects on these performance parameters, and with Darwish and El shukary, (2020) who found that using turmeric powder supplement in fayoumi broiler feed improved body weight gain and FCR, also Attia et al. (2016) observed that supplementation of mannan oligosaccharides at 2 g/kg diet-induced recovery in growth performance of groups challenged by 200 ppb AF for 21 days; Yildirim et al. (2011) evaluated the effect of glucomannan in broilers challenged by aflatoxicosis 2 mg/kg for 21 days and demonstrated that the weight gains and feed efficiency were partially restored; Ibrahim et al. (2021) who found that The addition of 0.1% agrimos to broilers has a positive effect on growth parameters, carcass traits without adverse effect on broiler immunity; Abdel-raheem and Esmail, (2012) found that quils fed diets with medium MOS level (3 g /kg feed) recorded significant (P < 0.05) improvements in body weight, weight gain and feed conversion efficiency. The addition of alpha-lipoic acid (0.03%) didn’t significantly increase BW or BWG, but only made a significant decrease (P<0.05) of FCR as compared to the non-treated aflatoxicated group. These agreed with Sakr et al. (2020) who indicated that the addition of alpha lipoic acid (50,100 and 200 mg/kg diet) significantly (p≤0.05) improved FCR results when compared with the control group and in contrast to Mourad et al. (2020) who found that aflatoxicated treated with lipoic chickens showed a significant increase of body weight when compared to aflatoxicated group at the end of the experiment. This may be due to the difference in aflatoxin b1 percentage in the total aflatoxin used as in our present study aflatoxin b1 was 97.19% of total 100ppb and the rest was aflatoxin b2(2.8%).

Increased levels of serum ALT, AST, GGT are indicators of liver injury (ÇELIK et al., 2005). In this study, at 21 days and at the end of the experiment 30 days there was a significant increase (p<0.05) in ALT, AST and GGT in the control positive group (G2) when compared with the control negative group(G1) as reported by (Subhani et al., 2018) and (Zabiulla et al., 2021). These biochemical alterations resulted from liver damage. In curcumin supplemented group serum ALT, AST and GGT were significantly decreased (p<0.05) at 21 and 30 days consistent with the findings of Alhangar an et al. (2016) who noticed that chickens fed with turmeric extract in food contaminated with 3 ppm of aflatoxin had significant lower ALT and AST. The addition of alpha-lipoic acid or Agrimos to aflatoxicated diet significantly decreases serum ALT and GGT at 30 days when compared to the control positive group but they only made a numerical improvement in serum AST when compared to the control positive group. These results agreed to some
extent with that reported by Sakr et al. (2020) who demonstrated that alpha-lipoic acid supplementation (50, 100 and 200 mg/kg diet) significantly reduced (p<0.05) serum ALT, AST, and GGT when compared with the control group. And also agreed with Chen et al. (2020) who observed that compared with the heat stress group, dietary supplementation of mannan oligo saccharides reduced serum ALT activity (P < 0.05) in broilers challenged with heat stress.

Our findings for kidney function tests at 21 day till the end of the experiment indicated that broilers in the control positive group (G2) showed a significant increase (P < 0.05) in both serum urea and creatinine level when compared with levels of the control negative group. These results agreed with those mentioned by Naseem et al. (2018) who found that at the end of the experiment, serum urea and creatinine concentrations of aflatoxicated groups were significantly higher in comparison with the control group. The high serum creatinine level is an indicator of kidney dysfunction and kidney damage, submit that it may be caused by the toxic effect caused by aflatoxin (Andretta et al., 2012) and (Chen et al., 2014). Also, the cause of high plasma urea concentrations is related to AFB1-induced nephrotoxicity (Kubena et al., 1991). Also, Gowda and Ledoux (2008) reported that increased urea and creatinine levels in 2 and 6-weeks old broilers fed 3 mg/kg AFB1 contaminated feed was related to inflammatory and dystrophic processes in the renal tubules. These results are accepted as a suggestion that AFB1 exposure may lead to degenerative changes in the kidney, leading to a decrease in the function of this organ. Agrimos® treated group showed a significant decrease (p<0.05) in serum urea level at the end of the experiment and serum creatinine from 21 days till the end of the experiment. These results agreed with a previous study mentioned by Yildirim et al. (2011) who studied the effect of glucomannan in broilers challenged by aflatoxicosis 2 mg/kg for 21 days and demonstrated that the uremia and the creatininemia were significantly enhanced regardless of the presence of liver and kidney damage similar to those observed in the aflatoxin group. Curcumin-treated group didn’t show any significant difference in urea level but creatinine level was significantly decreased (p<0.05) at 21 and 30 days when compared to the control positive group. Our results were in agreement with that reported by (Cruz et al., 2019). Likely, curcumin treated group addition of lipoic acid didn’t show any significant difference in urea level and only significantly improved creatinine level at the end of the experiment. This result matched with Li et al. (2014) who reported numerical enhancement of uric acid and creatinine in the lipoic acid treated group while increased in aflatoxicated chickens as compared to control and totally agreed with Mourad et al. (2020)(who stated that at the end of the experiment, only creatinine was significantly reduced in lipoic acid treated group.

Serum total protein and albumin were significantly decreased after 21 days till the end of the experiment in the aflatoxin administrated group (G2) when compared to the control negative (G1). This is indicative of the toxic effect of aflatoxin B1 on the liver and kidneys and is an indicator of diminished protein synthesis (Hussain et al., 2016). These results were in agreement with that reported by (Arafat et al., 2017); (Subhani et al., 2018) and (Cruz et al., 2019). The addition of curcumin showed a significant increase in serum protein and albumin at the end of the experiment when compared to the control positive group. Our results go hand in hand with (Cruz et al., 2019).

The use of lipoic acid and Agrimos led to a significant increase in total protein level but showed no significant difference in serum albumin level. These results were in agreement with that reported by Murali and George (2020) who found that supplementation of alpha lipoic acid at 100
mg/kg diet did not have any effect on serum albumin level in broiler chicken consumed with an animal fat-containing diet, however serum protein levels. Also, our results agreed to a certain degree with Ashry et al. (2022) who demonstrated that the addition of Saccharomyces cell wall to the aflatoxicated diet in broilers for 35 days resulted in a significant increase (p<0.05) in serum protein and albumin when compared to control positive group.

It was clear that curcumin, lipoic acid and Agrimos® effectively controlled aflatoxicosis in broilers. These results were confirmed by the histopathological examination which showed the severity of histopathological lesions induced by aflatoxins in the liver, kidney, spleen and bursa of Fabricius were reduced in aflatoxicated treated groups (G3, G4 and G5) when compared with aflatoxicated group (G2). This was going hand by hand with that mentioned by Cruz et al. (2019) who observed that histopathological findings that were obtained from the treated group with curcumin are close to the negative control group, showing that the addition of curcumin (0.2%) to the diets could be a choice to decrease the detrimental effects of AFB1, and Li et al. (2014) who observed that livers from broilers fed the AFB1 plus lipoic acid showed minor lymphocytes infiltration and slight vacuolar degeneration suggesting a protective effect of lipoic acid on aflatoxicosis and Mourad et al. (2020) who found that adding lipoic acid to aflatoxicated diet exhibited slight infiltration and hemorrhage in livers and slight congestion and edema of tubules when compared with the severity in histopathological results in aflatoxicated group. Yavuz et al. (2017) observed that 1g Glucomannan/kg to aflatoxicated diet for one-day-old quails result in a partial reduction in the severity of microscopic lesions seen in the liver, bursa of Fabricius and spleen.

CONCLUSION

It could be concluded that broilers feeding with 100 ppb of AF caused severe toxic effects on performance, target organs and serum biochemical variables. The dietary supplementation with curcumin (1g/kg diet), lipoic acid (300 mg/kg diet) and Agrimos (1g/kg diet) separately could significantly diminish some of the toxic effects that incurred by AF.

REFERENCES

(2008): Efficacy of turmeric (Curcuma longa), containing a known level of Curcumin, and a hydrated sodium calcium aluminosilicate to ameliorate the adverse effects of aflatoxin in broiler chicks. Poultry Science, 87: 1125-1130.

