INVESTIGATION ON PROBLEM OF CHLAMYDIOSIS AMONG DOMESTIC AND WILD SHEEP

With 7 Tables and 1 Photo

By

M.I. EISA and F.K. HAMODA*

* Dept. of Anim Med, Fac Vet Med, Zagazig University, Benha Branch.

SUMMARY

This study was designed to tackle the problem of chlamydiosis among 395 domestic and 90 wild sheep. Clinical examination of the animals investigation declared variable clinical manifestation to the disease. Clinical signs exhibited on 175 domestic sheep represented mainly by abortion at late stage of pregnancy, stillbirth or birth of weak uninterest...
Lambs, which show pneumatic or enteric signs. While the prominent signs appeared on 16 wild sheep was diarrhea and respiratory distress. Chlamydial bodies were detected and identified laboratory from suspected materials by chicken embryo inoculation, mice injection, Giemsa stained smear examination and CFT. The incidence of chlamydiosis relying on the above techniques was recorded and discussed. The specific chlamydial complement fixing antibodies was detected in both diseased (16.6%) and control clinically normal domestic sheep (6.4%). The treatment regimen for the diseased animals was applied and discussed. The current results suggested that, chlamydia psittaci is wide spread, chlamydiosis may have a wide range of clinical manifestation or occur as latent infection and the latency was cleared from detection of complement fixing antibodies against chlamydial infection in apparently healthy sheep. Risk of transmission of chlamydia species between wild and domestic sheep anticipated; so avoid or minimizing close contact of wild sheep with other domestic animals particularly sheep.

Key words: Chlamydiosis, sheep.

INTRODUCTION

Chlamydiosis is a contagious disease infect sheep and goats transmit the organism to uninfected susceptible animals. The classic symptoms of the disease are abortion, stillbirth, or premature delivery of weak lambs. Aborting animals are subsequently immune and will usually not abort with a chlamydial infection again. These animals remain chronically infected and transmit the organism to further susceptible sheep or goats, first through the placenta and vaginal discharges, later as chronic intestinal carriers [Milton et al., 1983; Salahy et al., 1987; Coetzee et al., 1994; Asarni et al., 1996; Botta et al., 1997; Radostits et al., 2000 and Rekiki et al., 2002]. Chlamydia psittaci is widely distributed obligate intracellular pathogens, which exhibit a broad pathogenic potential (Fukushi and Hiraiz, 1992).

All livestock species are infected (not species specific) but sheep and goats are the most commonly affected. Animals frequently become infected but show no signs and stress may precipitate clinical disease either as sporadic cases or as epidemics. It is probable that the fecal oral route is the most common means of transmission although aerosol and contact transmission may occur. Also venereal transmission and insects spreading are possible. Relying on variable factors such physiological state of the host, virulence of the organism and environmental factors,
the chlamydial infection may be causing abortion, still birth, pneumonia, polyarthritis, gastroenteritis, encephalomyelitis and infertility (Storz, 1971; Sharma et al., 1983; Miller et al., 1990 and Chiocco et al., 1992).

Moreover, Gut-Zugger et al. (1999) reported that chlamydia psittaci causes abortion and latent intestinal infection in sheep. Andrews et al. (1987) and Mengher et al. (1992) diagnosed an outbreak of infectious keratoconjunctivitis among bighorn sheep, also Saint-Aigne et al. (1992) found that lambs showing pneumonia, arthritis and conjunctivitis were positive to ELISA antibody against chlamydial infection. Chlamydia psittaci was recognized previously in Egypt as an important pathogen in some domestic animals (Farid et al., 1980; Atta, 1982; EL-Sayed, 1993 and Hadin et al., 1998).

Laboratory diagnosis of chlamydial infection among farm animals is based on the serological procedures because the isolation techniques remains more difficult and the staining methods are not totally reliable due to intracellular chlamydia are almost indistinguishable from mycoplasmas and rickettsias (Page, 1978 and Amin et al., 1998) and serological tests can be used to confirm or refute diagnosis (Martin and Aitken, 1999). The main problem in evaluating serotests results is their correlation to the actual infectious process (EL-Sayed, 1993).

The chlamydial CFT is the most widely accepted serodiagnostic method for chlamydial infections in animals (Kaltenboeck et al., 1997). It gave satisfactory results with ovine, caprine and avian serum samples but not with bovine samples (Butry and Nicollet, 1987). There was 88% and 68.04% agreement between the CFT and ELISA as reported by Vinu et al. (1982) and EL-Sayed. (1993) respectively.

Control measures of chlamydiosis should be based on serotests findings; the animals excreting the chlamydia but having no detectable antibody possess the risk of spreading the agent. This may contributed to the insufficient amount of antigen or to the early stage of infection (Storz, 1971).

Treatment with long acting tetracycline will reduce the number of chlamydial bodies shedded but it will not eliminate infection nor can it reverse the pathological damage already done to a heavily infected placenta. The most effective way to avoid introducing infection to a clean flock is to keep it close or to obtain replacements from sources known to be free of chlamydial infection (Martin and Aitken, 1999).

The purpose of this manuscript was to throw light on field problems namely abortion, respiratory distress, diarrhea and
conjunctivitis among either domestic or wild sheep through the following points:
A- Description of different clinical manifestation
B- Trial to clarify and identify the etiological determinant from inoculation of suspected materials in embryonated chicken eggs and mice, Giemsa staining smears examination and CFT.
C- Serological monitoring of both diseased and clinical normal contact animals
D- Therapeutic trials.

MATERIAL and METHODS
1- Animals and clinical investigation:
This study was performed on total number of 395 domestic sheep belonged to Sharkia and Ismailia governorates and 90 wild sheep from different zoos in Egypt. History and clinical examination of domestic and wild sheep were recorded (Table 1).

2- Antisera:
Reference antisera for chlamydia (chlamydia psittaci CF test reagents, “Seiken”), obtained from Denka Seiken Co., Ltd., 3-4-2, Nihombashi, Chuo-ku, Tokyo, Japan. It was used for detection of chlamydia bodies in the suspected materials

3- Reference chlamydia antigen:
It was obtained from Denka Seiken Co., Ltd, 3-4-2, Nihombashi, Chuo-ku, Tokyo, Japan. It was used in serological detection of antibodies.

4- Complement:
Freeze dried preparation of preserved guinea pig serum (Welcome Reagent Ltd) used in complement fixation technique.

5- Sampling:
The type and numbers of samples was illustrated in table (2).

A- Feral samples: These were collected freshly in sterile plastic container from domestic and wild sheep, to prepared fecal, diluted to 20% in phosphate buffer saline (pH 7.2-7.4) and centrifuge for 15 minutes at 3000 rpm and the supernatant were taken and exposed to filtration, add 1mg /ml of each of streptomycin sulfate, kanamycin sulfate and vanomycin, and the filtrate stored at -70°C until used in mice or egg inoculation (yolk sac route) and preparation of films stained by Giemsa stain.
B- Nasal and ocular swabs: It were taken from both domestic and wild sheep which used for detection and identification of chlamydia infection as mentioned previously in fecal samples.

C- Aborted fetus and placenta: The aborted fetus and placenta were sampled from 26 domestic sheep. The specimens and swabs from placenta and from lung, stomach and spleen of the aborted fetus were collected.

D- Serum samples: It was collected from diseased as well as apparently healthy domestic sheep (4w-post abortion) for detection of chlamydial antibodies using CFT.

Table 1: Animals under investigation.

<table>
<thead>
<tr>
<th>Animals</th>
<th>Total number</th>
<th>Diseased sheep</th>
<th>Apparently healthy sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic sheep</td>
<td>395</td>
<td>175</td>
<td>220</td>
</tr>
<tr>
<td>Wild sheep</td>
<td>90</td>
<td>16</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 2: Type and number of samples collected from domestic and wild sheep.

<table>
<thead>
<tr>
<th>Samples</th>
<th>No of samples collected from</th>
<th>Domestic sheep</th>
<th>Wild sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apparently healthy</td>
<td>Diseased</td>
</tr>
<tr>
<td>1- Fecal samples</td>
<td>220</td>
<td>64</td>
<td>74</td>
</tr>
<tr>
<td>2- Nasal & ocular swabs</td>
<td>-</td>
<td>85</td>
<td>74</td>
</tr>
<tr>
<td>3- Aborted fetus & placenta</td>
<td>-</td>
<td>26</td>
<td>-</td>
</tr>
<tr>
<td>4- Serum</td>
<td>220</td>
<td>175</td>
<td>-</td>
</tr>
</tbody>
</table>

5- Laboratory analysis:

A- Mice inoculation: 3-4 week old mice were inoculated intraperitoneally with 0.2 ml of fecal filtrate fluid, observed for 7 days post inoculation and mice that succumbed to the infection were autopsied and impression smears made from liver and spleen and stained by Giemsa stain. Also the survival control mice were sacrificed at the same time and handled in the same manner.

B- Egg or chicken embryo inoculation: Chicken embryos were inoculated via yolk sac route by fecal and nasal & ocular swabs filtrate and examined daily and discard embryos that died within 48 hours while those died three to ten days post inoculation were investigated for the
presence of chlamydial elementary bodies by examination of Giemsa
stained yolk-sac smears and the yolk sac harvested from positive
samples were emulsified and stored at −70°C until further identification
(Pierre and Michel, 1993).

C- Giemsa staining films: The films prepared from focal filtrate,
naresal & ocular swabs filtrate, the surface of liver and spleen of
inoculated and control mice and from yolk sac of inoculated eggs
(Hopkins et al., 1973).

D- Complement fixation test (CFT): It was used in detection of
chlamydial bodies in the suspected specimens (Yolk sac of infected
embryonated hen eggs) after the method adopted by Edwin and
Nathalie (1979). Also it was conducted on sera collected from domestic
and wild sheep for detection of complement fixing antibodies against
chlamydia according to the method of Edwin et al. (1979).

E- Trials of treatment: The treatment of domestic sheep was done using
oxytetracycline hydrochloride (oxytetracycline hydrochloride 5%,
1ml/10kg, B.W., VM, Arab Veterinary Industrial Co.) as specific
therapy beside symptomatic medicates (Coetzer et al., 1994 and
Martin and Atken, 1999).

RESULTS

1- Clinical investigation:
The observed clinical signs on domestic sheep were abortion at
late stage of pregnancy and still birth or birth of weak unthrifty
lambs. Few animals showed respiratory distress, arthritis in one or
more joint, kerato-conjunctivitis and diarrhea. While the prominent
signs exhibited on wild sheep were diarrhea and or respiratory
distress.

2- The incidence of chlamydiosis:
It was determined from:
A- Mice injection and Giemsa staining: The incidence
recorded among domestic sheep was 18.2% (26.5% in diseased
and 11.4% in apparently healthy), while was 13.3 % in wild
sheep (25% in diseased and 10.8% in apparently healthy animals)
as in tables (3) & (5).
B- Egg inoculation: The incidence was 17.3% in domestic
sheep (22.7% diseased and 10.5% in apparently healthy one)
while was 11.1% in wild sheep (18.8% in diseased and 9.5% in
apparently healthy animals) as in tables (4) & (6).
3- CFT:

It revealed that, chlamydial antibody was detected in 29 (16.6%) diseased domestic sheep and 14 (6.4%) apparently healthy one as in Table (7).

Table 3: Incidence of chlamydia using mice inoculation and Giemsa staining among diseased and apparently healthy domestic sheep.

<table>
<thead>
<tr>
<th>Total number</th>
<th>T.ve</th>
<th>%</th>
<th>No of diseased sheep</th>
<th>No of apparently healthy sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>Positive</td>
<td>%</td>
</tr>
<tr>
<td>295</td>
<td>68</td>
<td>17.2</td>
<td>175</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 4: Incidence of chlamydiosis using egg inoculation among diseased and apparently healthy domestic sheep.

<table>
<thead>
<tr>
<th>Total number</th>
<th>T.ve</th>
<th>%</th>
<th>No of diseased sheep</th>
<th>No of apparently healthy sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>Positive</td>
<td>%</td>
</tr>
<tr>
<td>395</td>
<td>72</td>
<td>18.2</td>
<td>175</td>
<td>47</td>
</tr>
</tbody>
</table>

Table 5: Incidence of chlamydiosis using mice inoculation and Giemsa staining among diseased and apparently healthy wild sheep.

<table>
<thead>
<tr>
<th>Total number</th>
<th>T.ve</th>
<th>%</th>
<th>No of diseased sheep</th>
<th>No of apparently healthy sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>Positive</td>
<td>%</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>11.1</td>
<td>16</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 6: Incidence of chlamydiosis using egg inoculation among diseased and apparently healthy wild sheep.

<table>
<thead>
<tr>
<th>Total number</th>
<th>T.ve</th>
<th>%</th>
<th>No of diseased sheep</th>
<th>No of apparently healthy sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>Positive</td>
<td>%</td>
</tr>
<tr>
<td>90</td>
<td>12</td>
<td>13</td>
<td>16</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 7: Results of CFT in diseased and apparently healthy domestic sheep.

<table>
<thead>
<tr>
<th>Total number of sheep</th>
<th>Diseased sheep</th>
<th>Apparently healthy sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>%</td>
</tr>
<tr>
<td>295</td>
<td>175</td>
<td>29</td>
</tr>
</tbody>
</table>

CFT titers ranged from 1/8-1/128
DISCUSSION

Chlamydiosis is infectious disease of all livestock species where sheep, cattle and wild ruminants are the most commonly affected, caused by Chlamydia psittaci, characterized clinically by variable clinical syndromes depending on whether the gastrointestinal, respiratory, nervous or reproductive systems and joints or eyes involvement. The infected animals frequently show no apparent clinical signs while stress factors may precipitate clinical disease (Mainzer et al., 1998). However, naturally occurring diseases caused by chlamydiosis spp. are relatively few in farm animals (Hunnerford, 1990 and Radostits et al., 2000). Chlamydial abortion causes serious reproductive wastage in many sheep producing regions of the world and occurs mostly in flocks that are intensively managed over the parturient period (Martin and Atkin, 1999).

A definitive diagnosis is based on correlation of clinical signs and pathological findings, the isolation and identification of chlamydiae from affected tissues or their presence in smears or exudates or in tissue sections (Coenraet et al., 1994). The clinical signs manifested on domestic sheep were identical to that described previously (Hopkins et
al., 1973; Drewecky et al., 1985; Shaleby et al., 1987; EL-Sayed, 1992; Hadia et al., 1998; Quinlan and McGuckin, 1999; Frail and Berenducq, 1999). While those observed on wild sheep similar to that observed by Taylor et al. (1996) and Cubero-Pablo et al. (2000). The incidence of chlamydiosis regarding mice inoculation and Giemsa staining (table 3 & 5) in investigated sheep was highly augmented by the prior work of Fariel et al. (1980); Sharma et al. (1990); Hadia et al. (1998) and Cubero-Pablo et al. (2000).

The incidence of the disease using inoculation of egg inoculation (table 4 & 6) were in agreement to that obtained previously by Edwine and Nathalie (1979); Machado et al. (1988); EL-Sayed, (1991); Batta et al. (1996); Batta et al. (1997); Giovannini et al. (1998) and Hadia et al. (1998). In this respect, Edwine and Nathalie, (1979) and Batty and Nicolot (1977) concluded that, isolation of chlamydia on embryonated eggs was very sensitive and considered the route of choice in isolation but was time consuming and easily ruined by bacterial contamination or toxicity.

The examination of liver impression smears prepared from inoculated mice and yolk sac smears from inoculated chicken embryos after staining by Giemsa stain revealed chlamydial bodies (Photo 1). Such result was in harmony to that obtained previously by Edwine and Nathalie (1979); Krishna and Rajya (1985); EL-Sayed (1993); Batta et al. (1996) and Hadia et al. (1998).

Serological studies added little information if compared with the isolation results of chlamydia psittaci. The group specific complement fixation test has been of little value because inadequate sensitivity and reliability (Schnoebel et al., 1974). However CFT is commonly used to identify flocks free of infection. It has good sensitivity but is not specific for the agent of enzootic abortion (Radosits et al., 2000). The detection of chlamydial bodies in investigated samples by CFT identical to that obtained by Hadia et al. (1998).

The result of CFT in domestic sheep was tabulated in table (7). The current results were nearly identical to that reported by Fariel et al. (1980); Farine et al. (1985); Penrit et al. (1988); Batta et al. (1996); Kaligrovec et al. (1997); Duran and Dumus (1998) and Quinlan and McGuckin (1999). However, interpretation of CFT results can be confounded by false positives, perhaps attributable to concurrent infection with C. psittaci and C. pecorum (Martin and Aitken, 1999).
The detection of CFT in apparently healthy documented the latency of chlamydial infection in sheep. The above results were similar to that recorded by the prior workers (Ataneh, 1982; Hozarka and Dibling, 1985 and Fahida et al., 1988 and Cubero-Pablo et al., 2000). Moreover, Espana et al. (1996) detected chlamydia psittaci in systemic subclinical infections in adult sheep.

Diagnosis of abortion caused by chlamydia psittaci var boyli was established if the results of CFT was taken in conjunction with clinical and pathological findings (Shtefan, 1984).

The results of treatment proved marked clinical improvement and the problem ceased within three weeks, this result was in agreement to that recorded by Martin and Arkin (1995). In this context Quilin and McGlade (1999) treated all the ewes in a sheep flock manifesting chlamydial abortion with long acting tetracycline at 20 mg/kg, b/w and the problem ceased within two weeks.

The current result suggested that, chlamydia psittaci is wide spread both as a cause of abortion and as latent intestinal infection. The evidence of chlamydial infection among apparently healthy sheep proved the latency.

As well, from epidemiological point of view the system of breeding in Egypt facilitate contact of different animals species enhancing spread of chlamydia sp. Griffiths et al. (1995) who mentioned that close contact between ruminant species on the farm suggested that chlamydia psittaci strain might have been transmitted to cattle, traced such opinion from infected sheep. Also migratory sheep flock disseminate the infection along wide area.

Finally, control measures can be therefore based on accurate diagnosis and good management and hygiene as isolation of aborting ewes, clean up and disinfect infected pens, hygienic disposal of aborted fetus and placenta, avoid crowding at lambing, avoid contact between domestic and wild sheep or other animals, or reduce the risk of intertransmission of chlamydia sp between wild and domestic ruminants through grazing on the same pastures, restriction or avoid migration of sheep flocks and recommended vaccination particularly in flocks with recurrent chlamydiosis.

ACKNOWLEDGEMENT

The authors express their cardiac thanks to prof. Dr. A.M. Selim professor of Infectious Diseases, Fac. Vet. Med., Zagazig Univ., for his continuous advice.
REFERENCES

Edwine, H.L. and Nathalie, J.S. (1979); Diagnostic procedures for viral, Rickettsial and Chlamydial infection. 5th Ed. American Public Health Association.

