Dept. of Food Hygiene,
Fac. of Vet. Med., Cairo University,
Head of Dept. Prof. Dr. A.W. Moursy.

PUBLIC HEALTH SIGNIFICANCE OF COLIFORMS IN RAW MILK AND DOMIATI CHEESE
(Received at 2/3/1991)

By
A.M. AHMED and S.S. SALLAM

SUMMARY

One hundred random samples of market raw milk and Domiati cheese (50 each) collected from different localities in Cairo and its suburbs were examined bacteriologically for detection, count, isolation and identification of coliforms.

All examined raw milk samples proved to be contaminated with coliform organisms with a mean value of 38.30×10^6. On the other hand, 33 out of the 50 Domiati cheese samples were contaminated with coliforms with a mean value of 36.98×10^6.

E.coli, Enterobacter cloacae, Ent. aerogenes, Ent. agglomerance, Ent. gergoviae, Citrobacter amalonaticus, Cit diversus, Cit. freundii, Klebsiella oxytoca, K. ozaenae, K. rhinoschleromatis and K. pneumoniae could be identified from examined raw milk and Domiati cheese samples of various percentages.

The public health importance of isolates has been discussed.
INTRODUCTION

Milk and its products are liable to contamination from different sources during production, handling, and distribution. Coliform organisms stand first among food contaminants as they are widely spread in nature. Some of these contaminants induce certain objectionable changes in the product while others play a pathogenic role among consumers.

Contamination of dairy products with coliforms is used to ascertain the standard of sanitation maintained during production. Moreover, some organisms are frequently implicated in different affections among consumers.

The present investigation deals with the rate of contamination of both raw milk and Domiati cheese with coliform organisms.

MATERIAL and METHODS

Fifty random samples each of market raw milk and Domiati cheese were collected from different localities in Cairo and its Suburbs. Milk samples were subjected to Gualac test (SCHONBERG, 1956), heat treated samples were discarded. Raw milk and Domiati cheese samples were prepared according to A.P.H.A. (1985).

Prepared samples were bacteriologically examined for determination of coliforms content (MPN/100 ml or gm) according to the technique recommended by A.P.H.A. (1985). Isolated purified colonies of coliforms were identified morphologically and biochemically according to KRIEG and HOLT (1984).

RESULTS

All results obtained are recorded in Tables (1 & 2).

Table (1): Statistical analytical results of coliform content (MPN/100 ml or gm) in examined samples.

<table>
<thead>
<tr>
<th></th>
<th>Positive samples No.</th>
<th>%</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw milk</td>
<td>50</td>
<td>100</td>
<td>33×10⁻²</td>
<td>13×10⁹</td>
<td>38.30×10⁷</td>
<td>26.87×10⁷</td>
</tr>
<tr>
<td>Domiati cheese</td>
<td>33</td>
<td>66</td>
<td>24×10⁻²</td>
<td>24×10⁷</td>
<td>36.98×10⁶</td>
<td>12.45×10⁶</td>
</tr>
</tbody>
</table>

COLIFORMS, RAW MILK & DOMIATI CHEESE

Table (2): Incidence of isolated coliforms from examined positive samples.

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Raw milk</th>
<th>Domiati cheese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of samples</td>
<td>%</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Ent. aerogenes</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Ent. agglomerans</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Ent. gergoviae</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Citrobacter amalonaticus</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Cit. diversus</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Cit. freundii</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>K. ozaenae</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>K. rhinoschomatis</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>

DISCUSSION

Coliform content:

Results given in Table (1) reveal that all samples of raw milk proved to be highly contaminated with coliforms, the maximum coliform content (MPN/100 ml) was 13×10^9, the minimum was 33×10^2, with a mean value of 38.30×10^7. Nearly similar counts were reported by MOAWAD (1988) and ABDEL-HADY (1989).

It is also clear from the results recorded that coliform organisms could be isolated from 33 out of the 50 Domiati cheese samples examined with a mean count of $36.98 \times 10^6/100$ gm (Table 1). Nearly similar findings were reported by SAUDI (1980) and ABDEL-RAHMAN (1988).

Isolated coliforms:

E. coli could be isolated from 32% and 15.151% of examined raw milk and Domiati cheese samples respectively, while Enterobacter cloacae, Ent. aerogenes, Ent. agglomerans, Ent. gergoviae, Citrobacter amalonaticus, Cit. diversus, Cit. freundii, Klebsiella

oxytoca, K. ozaenae, K. rhinoscleromatis and K. pneumoniae could be isolated from examined raw milk and Domiat cheese samples at varying percentages ranging from 3.030% to 57.575% (Table 2). These findings substantiate what have been recorded by ABD-EL-RAHMAN (1988) and MOAWAD (1988).

The public health importance of isolated coliforms has been reported by many authors. E.coli have been incriminated in urinary tract infection, peritonitis and wound infection. Klebsiella pneumoniae may be responsible for bronchopneumonia, pyaemia and cystitis, while K. ozaenae was found in cases of ozaenae in man. Citrobacter freundii and Enterobacter species were incriminated in urinary tract infection and septicemia (BALLY & SCOTT, 1974; PYATKIN & KIRVOSHEIN, 1980; KRIEG & HOLT, 1984 and ICMSF, 1986).

REFERENCES

