CORRELATION BETWEEN CHLORIDE CONTENT 
IN DRINKING WATER AND ASCITIS IN POULTRY 
(With 3 Tables)

By 

H. SAMAHA and A. EL-BASSIOUNY 
(Received at 31/5/1990)

SUMMARY

Chemical examination of 27 water samples collected from poultry farms at Alexandria Province were done, 8 samples exceeded the permissible limits of chloride content.

Chicks from one day old until 28 days of age were allowed to receive various levels of chloride in water. The results indicated that excessive chloride levels leads to ascitis in poultry as a predisposing factor.

14 ascitic fluid were examined bacteriologically for the presence of E. coli and revealed the percentage of E. coli at a rate of 100%. Only 4 isolates proved to be pathogenic and belonging to 0:114 (one) and 0:18 (Three). So, water of poultry farms must be examined periodically.

INTRODUCTION

Ascitis in poultry is caused by bacteria, nutritional deficiency or environmental conditions (EL-BASSIOUNY et al., 1986). HEGAZY (1986) isolated E. coli in high rate from ascitic fluid of chickens. Mineralized water is a direct cause of kidney dysfunction (HOE & OISHEA, 1965 and YOUSEF et al., 1990). In Egypt, numerous investigations have shown that chemical contents of the examined water samples make it unfit for consumption (FAHMY, 1964; EL-RAHEDY, 1980; ABDEL-KADER, 1983 and EL-OLEMY, et al., 1989a). So the present study was planned to study the correlation between the chloride content in drinking water and ascitis in poultry.
1. Collection of water samples:

27 water samples were collected from different localities at Alexandria Province, Collection and transportation of samples were carried out according to APHA (1975).

2. Chemical examination of water samples:

Ammonia, phosphate, nitrite, nitrate, hardness sulphate and chloride were detected according to FAHMY (1964).

3. Experimental study:

Two groups of both sex of commercial broilers (Each group contained 30 chicks) were grown during the one day old to 28 days brooding period. All chicks were kept in a clean disinfected and separated bacteries, fed on balanced ration with a perfect management. The first group was dranked water obtained from a driven well of a high chloride level and the second one dranked a fresh hygienic tap water. Both types of water were disinfected with iodocor (0.5 ml/L) according to EL-OLEMY et al. (1989b) to insure that water free from any pathogens. Clinical observation were recorded daily to detect health, diseased and dead chicks.

4. Detection of E.coli:

Ascitic fluids were streaked on Macconkey agar and incubated at 37°C for 24 hours (HEGAZY, 1986). Suspected E. coli were identified morphologically, biochemically and animal inoculation according to EDWARD and EWING (1972). Serological identification of E. coli isolates were carried out according to EL-SHENAWY et al., 1976).

RESULTS

Results are presented in (Tables 1, 2 & 3).

Table (1) : Showing Chemical examination of the examined water samples.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Ammonia mg/L</th>
<th>Nitrite mg/L</th>
<th>Nitrate mg/L</th>
<th>Sulphate mg/L</th>
<th>Phosphate mg/L</th>
<th>Chloride mg/L</th>
<th>Hardness mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible</td>
<td>-</td>
<td>50</td>
<td>200</td>
<td>-</td>
<td>200</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Excessive</td>
<td>-</td>
<td>100</td>
<td>400</td>
<td>-</td>
<td>600</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Higher than the excessive</td>
<td>27</td>
<td>20</td>
<td>-</td>
<td>20</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CHLORIDE & DRINKING ASCITIS IN POULTRY

Table (2): Showing the relation between chloride and ascitis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>6.3</td>
<td>7.2</td>
</tr>
<tr>
<td>Ammonia (mg/L)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrite (mg/L)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrate (mg/L)</td>
<td>0.3</td>
<td>0.23</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>1940</td>
<td>122.7</td>
</tr>
<tr>
<td>Sulphate (mg/L)</td>
<td>100</td>
<td>82.6</td>
</tr>
<tr>
<td>Hardness (mg/L)</td>
<td>60</td>
<td>49.0</td>
</tr>
<tr>
<td>Ascitis cases:</td>
<td>14</td>
<td>-</td>
</tr>
</tbody>
</table>

Table (3): Incidence of E.Coli in ascitic fluid.

<table>
<thead>
<tr>
<th>No. of Samples</th>
<th>E.Coli +Ve</th>
<th>%</th>
<th>Pathogenic strains +Ve</th>
<th>%</th>
<th>Serotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14</td>
<td>100</td>
<td>4</td>
<td>25.5</td>
<td>3/18, 0/114</td>
</tr>
</tbody>
</table>

DISCUSSION

As shown in Table (1) the chemical examination of the examined water samples revealed a high variations which might be due to the difference in the nature of the ground state (ZALATA, 1971). Similar results were obtained by FAHMY (1984), EL-ROSHEDEY (1980), ABD-EL-KADER (1983) and EL-OLEMY et al. (1989a).

The results presented in Table (2) point out the effect of chloride drinking water on chicken wellbeing was most significant in the first group as it showed a marked increase in the occurrence of ascitis. Similar results were reported by MARRISON et al. (1975) using a high level of sodium chloride on turkey feeding. Moreover, high concentration of chloride in drinking water of chicks may render it unpalatable for livestock and has a toxic effect (BLOOD and HENDERSON, 1974).

SAHMAH & EL-BASSIOUNY

From the bacteriological examination of the ascitic fluid, E. coli were only isolated from such fluid in all ascitic chicks (Table 3). A nearly similar finding substantiates reported by HEGAZY (1986). Enteropathogenic serotype of E. coli (28.5%) has been of public health importance. In addition, the identified serotypes 0/18 and 0/114 agree with the finding of EL-BASSIOUNY (1985) who isolated the same serotypes from faecal samples of chickens denoting that these serotypes of E. coli were predominated in chickens.

Generally, from the abovementioned results and discussion it can concluded that high level of chloride in drinking water may be a cause of ascitis in chickens which predisposing the spreading of E.coli in chickens so; periodical chemical examination of drinking water must be done regularly and the water of over permissible limit of chloride must be excluded or treated.

REFERENCES


CHLORIDE & DRINKING ASCITIS IN POULTRY

