تقييم طريقة الصحة الغنية لتشخيص طفل البابريازيا ببيجيما في الحيوانات التي
تعد وسلبية اكلينيكية

طلبه العلمي : عاطف سكولا

فحص الباحتان مسحات صغيرة لثلاثين من امتحان طب طب وسلبية اكلينيكيا امكن الحصول
عليها من سلخة أسبوط، وضررت بعد ذبحها فترة قصيرة وتبين من الفحص اصابية بعض هذه
الامتحان باطوار من طفل البابريازيا ببيجيما.

وقد وصف الباحتان هذا الطوار رصنا تفصيليا واقتراحا استخدام المسحات الغنية كطريقة
تشخيصية لطفل البابريازيا خاصة في الحالات التي يصعب فيها تشخيص الحفر في المناطق التي
يستوطن فيها هذا الطفل.

قسم: الطفيليات - كلية الطب - جامعة أسوان.
رئيس القسم: أ.د. عماد كامل ناصع.
EVALUATION OF BRAIN SMEAR TECHNIQUE AS A METHOD FOR DIAGNOSIS OF BABESIA BIGEMINA (SMITH AND KILBRONE, 1833) IN CLINICALLY NORMAL CATTLE
(With Two Figures)

By
T. EL-ALLANY and A. A. SAKLA
(Received at 3/1/1982)

SUMMARY

Babesia bigemina parasites were encountered in the brain smears of clinically normal cattle in Assiut Governorate. Two different forms were described and photomicrographed. This was the first report on this finding in Egypt, which might throw the light on the validity of using brain smear technique as diagnostic method for concealed infection in clinically normal cattle.

INTRODUCTION

Diagnosis of Babesia spp. in tissue smears has drawn the attention of few authors. ZLOTNIK (1953) claimed that Babesia bigemina was the causative parasite for cerebral piroplasmosis, and he described the brain smear forms. On the other hand, CALLOW (1963) based his investigations on brain smear technique for detection of B. argentina in experimentally infected cattle as well as cattle from enzootic area. The present study was carried out in order to throw further light on the importance of brain smear technique in diagnosis of babesiosis in clinically normal cattle in Assiut Governorate, upper Egypt.

MATERIAL and METHODS

Thirty brains of clinically normal cattle were obtained from Assiut abattoir shortly after slaughtering. A series of brain tissue smears were prepared from the grey matter of each case according to the technique adopted by CALLOW (1963). Smears were dried, fixed in methyle alcohol and stained with Giemsa's stain. Careful examination of the stained smears were done under the oil immersion lens. Photomicrographs as well as measurements for the detected parasites were taken.

RESULTS

Examination of the stained brain smears revealed the presence of two different forms of B. bigemina infecting the red blood cells. These were small contracted anaplasma-like forms, up to one micron in diameter (Fig. 1). They usually occur as paired and occasionally as single parasite occupying the centre of the host erythrocytes. Vacuolated signet ring form up to 1.5 micron were also detected (Fig.2). They tend to lie singly in the centre of the host erythrocytes of the brain capillaries. Small number of the parasites in the smears were observed. Typical forms of B. bigemina could not be demonstrated.

DISCUSSION

In areas, for instance Assiut Governorate, where B. bigemina (tick fever) is known to be endemic, EL-ALLANY (1973) and SAKLA (1975), it must be stressed that the demonstration of the parasites in the peripheral blood for a spot diagnosis may require prolonged search. As a matter of fact, LEVINE (1973) reported that cattle which have recovered from an attack of B. bigemina remain infected for life, and are premonized to reinfection. Premonition is due to continuing low grade of infection, and premonized animals may show signs of disease under stress of one sort or another. The aforementioned statement most probably representing an explanation for the evidence of

* Dept. of Parasitology, Faculty of Medicine, Assiut University.

EL-ALLAWY and SAKLA

finding small number of the parasites in the brain smears of clinically normal cattle in the course of the present study. However, if we were asked whether these forms can reproduce the disease in another healthy cattle, it is difficult to state here a sharp answer as it needs another experimental study.

Few authors have drawn the attention of the confinement of the piroplasmas in brain capillaries. ZLOTNIK (1953) described a cerebral form of piroplasmosis in cattle caused by B. bigemina. He stated that the parasitized red corpuscles blocked the brain capillaries which constitute an important cause of death. The finding of ZLOTNIK (1953) was not in agreement with the present authors as well as CALLOW et al. (1963). Zlotnik animals acquired acute severe course, while those of the present work are clinically normal carriers. In addition, CALLOW et al. (1963) believed that Zlotnik parasite was not B. bigemina. However, detection of the contracted forms of the organism in the red blood corpuscles of the brain capillaries in the present material accords with the finding of ZLOTNIK (1953). Furthermore, the present authors failed to find the typical forms of B. bigemina in their brain material, while Zlotnik (1953) reported the presence of these forms in one calf.

On the other hand, CALLOW (1963) reported the presence of B. argentina in the brain smears of 299 out of 456 cattle from enzootic areas, while he failed to detect B. bigemina in the same animals. However, he put in consideration the statement that brain smears were superior to other organs smear for the detection of babesiosis.

The aforementioned data in the present study agreed with the finding of CALLOW et al. (1963) that B. bigemina was not incriminated as a cause of cerebral babesiosis in cattle, particularly by detection of small numbers of B. bigemina parasites in the brain smears of the clinically normal animals.

So far, the present work was the first to report the diagnosis of concealed infection in clinically normal carriers by using brain smear technique in Egypt. However, in cases of sudden death of cattle, babesiosis must be put in consideration and brain smears taken shortly after death is highly recommended.

REFERENCES


Fig. 1 Photomicrograph showing single contracted form of *B. bigemina* in brain smears.

Fig. 2 Photomicrograph showing vacuolated ring form of *B. bigemina* in brain smear (Notice also a paired contracted form in the same cell).