دراسة على النظام الرحم بعد العملية القصيرة
في الأغذية باستخدام الخطاطير جراحية مختلفة

عبد اللطيف يحمي، صلاح ديب، محمود الجندى

اجرت العملية القصيرة في الشهر الأخير من الحمل والقرب من تاريخ الولادة المتوقع في عدد سبعة وعشرون فحصة. قسمت العينات إلى خمسة مجموعات وفي كل مجموعة استخدم نوع معيين من الخطاطير الجراحية. الخطاطير الجراحية التي استعملت في البحث هي كاتج، جين-واد، كرومالك، كات جيست، بيرسلي، جبر، براون.

دراسة النتائج الباطولوية متبولة وميكروسكوبية على النظام الرحم وروشتة النتائج.

القسم: مخبر تشريحي، كلية الطب البيطرى، أسيوط
الرئيس: د. محمود حمزة الجندى
UTERINE HEALING AFTER CESAREAN SECTION IN SHEEP USING VARIOUS SUTURE MATERIALS

(With 7 Figures)

By

A.H. BAYOUMI, S. DEEB and M.H. EL-GUINDI

(Received at 28/12/1981)

SUMMARY

Cesarean sections were performed at the last month of pregnancy in 27 ewes. The animals were classified into five groups, A, B, C, D and E. Plain catgut, Chromic catgut, Herselene, Silk and Prolene** were used respectively.

On macro and morphological and micromorphological examination, it was observed that the best suture material used was Herselene in which the edges of the wound throughout the entire line of incision were held together by definite scar tissue, the latter did not impair the uterine involution.

INTRODUCTION

Perfect uterine healing following cesareotomy is important to avoid any hazards in the future pregnancy. The process is known to be influenced, among other factors, by the type of suture material employed (CAMBLE, 1922, DAVIS, 1922, BABCOCK, 1942, POTTER and HORNAN, 1942, HILNE, 1951, MADSEN, 1953, SCHMITZ and GACINSKI, 1959, POSTLETHWAIT et al., 1959, TYAGI and LIMB, 1961, VERMA and TYAGI, 1973).

Due to the increasing number of cesarean sections performed routinely, it becomes thus essential to find the most suitable suture material for approximating the surgical uterine incision. The purpose of the present work is to study the tissue reaction incited by various suture materials, namely, Catgut, Chromic catgut, Herselene, Silk and Prolene in Awasi sheep. The process of healing was also taken in consideration.

MATERIAL and METHODS

For this study, 27 clinically healthy pregnant adult ewes were in advanced stages of gestation were procured. Age and weight of the animals used varied from 3-5 years and 35-55 kgs respectively. The animals were divided into 5 groups (A, B, C, D and E) each containing 5-6 animals. Near term, cesarean sections were performed when the usual physical signs of approaching parturition appeared. 10 minutes before the operation, 0.3 ml Rompun as a tranquilizer was intramuscularly given. The operation site was prepared in the usual manner for aseptic surgery. Linear infiltration with 30 cc 1% orthocaine as a local anesthetic was done at the proposed line of abdominal incision. A vertical incision was made through the skin, muscles and peritoneum. The gravid horn was incised between the rows of the cotyledons and the foetuses, the foetuses were then delivered through this incision. The uterine incisions were approximated using oo Plain catgut, oo Chromic catgut, Herselene, oo Silk and oo prolene in groups A, B, C, D and E respectively. After foetuses were delivered, the protruding foetal membranes were removed before closure of the uterus which was done using transverse and longitudinal lambert sutures. Otoscel as a local antibiotic was used and the uterus was returned into its normal position. The incision in the peritoneum and muscles of the abdominal wall were closed using simple continuous sutures, and the skin with mattress sutures. Neopan, 5 ml was given intramuscularly for six days. Fifteen days post-operatively, the animals were slaughtered and samples of the uterine wall were taken from suture site. Samples were preserved in 10% neutralized formal solution. The preserved tissue specimens were processed in the usual manner for paraffin embedding. Five micron thick sections were stained with haematoyxin and eosin and microscopically examined.

* Herselene A, suture material produced by Ethicon Scotland.
** Prolene A, suture material produced by Ethicon Scotland.
RESULTS

Generally, suturing process appeared to elicit the formation of granulation tissue, the latter involved an active proliferation of fibroblasts and newly formed blood vessels.

In the endometrium, connective tissue formed caused an increase of size of the material villi and led to degeneration and disappearance of the uterine glands. Moreover, compression of two villi during the process of suturing as well as the pressure induced by fibroelastic, enlarged villus in which suturing took place induced degeneration of the covering epithelium of the sides of the villi (Fig. 1). However, a band of regenerating cuboidal epithelium was occasionallly observed at the tips of these villi. Many of the infiltrating macrophages, laden with golden-yellow hemosiderin pigment, were commonly observed probably at the sites of old haemorrhage from severed blood vessels.

Sutures occurring in the myometrium were associated, likewise, with fibrosis in which fibroblasts and mature fibrocytes were observed (Fig. 2). The area of connective tissue formation usually extended throughout the whole layers of the myometrium. The muscle fibers of the latter usually showed hyalinization manifested as loss of fine structure and increased acidophilia (Fig. 3). Hyalinization was also observed to occur in the connective tissue of the zona compacta and basalis of the endometrium (Fig. 4), as well as in the stratum vasculosum of the myometrium especially in the adjacent areas of the sutures. Moreover hyalinized blood vessels were occasionally seen (Fig. 5).

Serosa of the perimetrium appeared continuous and the two excised edges were connected together with a band of connective tissue.

In the wall of the uterus remnants of suturing materials could be observed microscopically in group A, B, C, and D. In group A, suturing material consisted of homogenous basophilic material occupying the whole area. Suturing material of group C and D consisted of narrow strands, that of group D was more fine. While a slight mononuclear cell reaction was seen partly surrounding the suture material in group A and B (Fig. 6), similar findings were not observed in any of the other groups, the reaction was mainly in the form of fibrous connective tissue formation (Fig. 7).

In all groups involution and regeneration of the gravid uterus appeared not to be affected by this surgical procedure. The glandular lumina were free of any cellular debris and there were no features of inflammation neither acute such as glandular cuffing nor chronic such as periglandular fibrosis. In the lamina propria of the endometrium mild infiltrating macrophages were observed. Remnants of fetal villi were also seen indicating that the process of uterine involution was still progressing.

From the above, it can be concluded that the best suture material was that used in group C and that the reaction was mainly local in the form of connective tissue formation and cicaterization which did not impair uterine involution. Care must be taken during suturing in order to avoid the endometrium.

DISCUSSION

In the present work, healing of incised uterus following caesarean operation was found to take place by scar formation. The ability of smooth muscle fibres to grow and regenerate (WILLIAM, 1917, CAMBE, 1922, ARTHUR, 1952) was not observed. In contrast, the muscle fibres around sutures undergo degenerative changes in the form of hyalinization. Similar results were also reported by many investigators in different species, in man (BABCOCK et al., 1942, POTTER and NOTMAN, 1942, SCHMITZ and CJOENSKI, 1959), cattle and sheep (CHELI, 1957), goats (TYAGI and LUBE, 1961, VERN and TYAGI, 1973) as well as guinea pigs (SCHWARTZ and PODOCK, 1938). Tissue reaction was found to be the least in severity, the more finer the suture material applied. This may be related to resucing the size of foreign bodies embeded in the lining tissue. Regeneration of the uterus post-partum developed normally, and the process of caeseratomy did not impair this process.
REFERENCES

DESCRIPTION OF FIGURES

Fig. 1 : Two uterine villi, loss of covering epithelium. Group C, X 400.
Fig. 2.a: Connective tissue band at the site of Incision in the myometrium. Group C, X 100.
Fig. 2.b: Connective tissue lying between hyperatrophioid muscle fibers at the site of Incision. Group D, X 400.
Fig. 3 : Hyalinized connective tissue in zona basalis of the endometrium. Group C, X 400.
Fig. 4 : Hyalinized muscle fibers in the adjacent area of a suture. Group C, X 400.
Fig. 5 : Hyalinized blood vessel in stratum vasculosum of the myometrium. Group B, X 400.
Fig. 6 : Mononuclear cell reaction surrounding a suture, notice the structure of the suturing material. Group B, X 400.
Fig. 7 : Fibrosis around a suture, Group E, X 100.