قسم طب الحيوان
كلية الطب البيطري - جامعة أسيوط
رئيسي القسم: د. إبراهيم سيد أحمد

ثابت عبد المنعم ، فادل شعائه ، محمد عبد العال

اجريت هذه الدراسة لتحديد نسبة تركيز الكريت في الهواء، في عينة نهاية عينة من مصنع السماد من قصب السماد بمنقباد، وهو يعتبر الكريت أحد مخلفات السماد الرئيسية.

وقد قام الباحثون بهذه الدراسة بتقدير نسبة الكريت في عينة عينة من الهواء، وذلك مرتين. وكانت النتائج تشير إلى ارتفاع نسبة الكريت في معظم عينات الهواء المفحوصة.

ولعدم ظهور أعراض التسمم بالكريت بجانب الدراسة السابقة، وقعت نسبة الكريت في الهواء (idar الأكبر) 11.01% في عينات الأكبر، 14.81% في عينات خلف، 27.92% في عينات زياد، 31.24% في عينات المولود، 32.4% في عينات الأكراد، 33.74% في عينات الطواب، 34.3% في منقباد، 34.4% في عينات عمان، 36.1% في عينات المهدي، 37.0% في عينات أبو القاسم، 38.0% في منقباد.

* قسم الصحة كلية الطب البيطري - جامعة أسيوط
AIR POLLUTION IN AREAS SURROUNDING
THE SUPERPHOSPHATE FACTORY AT MANQUABAD
I- SULPHUR
(With One Table)

By
TH.A. IBRAHIM; A. SHEHATA and M.A. SOBIH*
(Received at 29/7/1984)

SUMMARY

The present study recorded sulphur concentrations in air of 11 areas surrounding the superphosphate factory of Manquabad. The sulphur concentrations were 5.193, 5.011, 2.814, 2.799, 4.634, 4.323, 0.940, 1.661, 3.370, 3.989, 0.896, and 0.903 ppm for Ezbet El-Akrad, Ezbet El-Sharuni, Ezbet Khalaf, Beni-Zeid El-Akrad, El-Twabliya, Manquabad, Ilwan, El-Haddaia, Beni-Hussin, Sallam, Ezbet Abo-El-Kassem, and Manfa- loute respectively.

INTRODUCTION

For many centuries, polluted air has been considered to be a hazard to human and animal health. The development of control measures to prevent or limit air pollution is now a matter of concern in all countries and not only those with highly industrial communities. The first step in the control is the determination and estimation of pollutants concentration in the suspected area.

In Assuit province, the manufacture of superphosphate fertilizer at Manquabad area is a major industry. The annual production is equivalent to rather more than million tons of superphosphate. This involves sulphuric acidulation of raw tricalcium phosphate rock to produce soluble monocalcium phosphate available for fertilizer purposes (ABDEL-MEQUID et al. 1982). Sulphuric acid is formed firstly by burning sulphur in an excess of air to form sulphur dioxide gas, and then inducing this to the unit with further oxidation to form sulphuric anhydride and then, in the presence of moisture, sulphuric acid (NORRIS and BRINK, 1976). During the previous process, excess of SO₂ and SO₃ (produced through further oxidation of SO₂) gases are emitted outside (96.12 and 9.99 kg./hour), contaminating the atmosphere, in addition some elemental sulphur (which is stored uncovered inside the plant) are emitted outside (IBRAHIM, 1980).

Numerous studies have demonstrated the toxic effects of sulphur dioxide, sulphur trioxide and elemental sulphur in air on both human and animal health (REID, 1963; LILLIE, 1970 and PURDOM, 1980).

The acute sulphur poisoning in cattle are manifested by depression of animals, Colicy pain, unwilling to stand. Fast and shallow breathing beside smell of hydrogen sulphide. Apparent diarrhoea was characterised by blackish colouration (MCFARLANE, 1952). Anaemia, achromotrichia, neonatal ataxia, bone fractures were described in sheep suffering from copper deficiency due to sulphate poisoning as an elementary sulphur (UNDERWOOD, 1962). Signs of sulphur dioxide poisoning are

* Dept. of Hygien, Faculty of Vet. Med., Assiut University.

severe respiratory and circulatory disturbances, and severe irritation of the nasal mucous membrane (AKMAN, 1955). Pigs exposed to concentration of 5–40 ppm for 8 hours, showed clinical evidence of eye respiratory tract irritation (O'DONAHUE and GRAESSER, 1962). Metabolic disorder were observed in goats exposed to \(SO_2 \) concentration of 1.5–2.5 mg/m\(^3\) of air (LAUNER and RUHLE, 1983).

The aim of our present study in estimation of \(SO_2 \) \& \(SO_3 \) and elemental sulphur concentration in the air in the areas surrounding superphosphate factory at Manquabat as a first step for control of pollution in this areas.

MATERIAL and METHODS

The study of sulphur concentration in air involved 11 areas, surrounding the superphosphate factory of Manquabat (Manquabat, El-Akrad, Ezbet El-Sharuni, Ezbet-Khalaf, Beni-Zeid El-Akrad, El-Tawabia, Ilwan, El-Hadaia, Beni-Hussin, Sallam, Ezbet Abo El Kassem, and Manfaloute). The distances and directions of these areas in relation to the superphosphate factory are illustrated in table (1). Ten air samples from different localities were collected from each studied area. Air was aspirated by means of a small electric pump, through a Drechsel bottle containing 10 ml. of 30% hydrogen peroxide. The air volume was measured by a gas meter at a rate of 10 cubic litre/minute (MORROW and BRIEF, 1972).

The hydrogen peroxide method involve absorption of sulphur in \(H_2O_2 \) in which it oxidized to sulphuric acid. The quantity of sulphuric acid is determined by titration with 10% of barium chloride (SEINFELD, 1975). The amount of barium sulphates was determined gravimetrically as recommended by VOGEL (1961).

RESULTS

Results obtained are recorded in table (1).

<table>
<thead>
<tr>
<th>Areas</th>
<th>Mean±S.E. (ppm)</th>
<th>Distance from the factory (K.M.)</th>
<th>Direction from the factory</th>
<th>Angle of direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezbet-El-Akrad</td>
<td>5.19±1.499**</td>
<td>0.50</td>
<td>South</td>
<td>0</td>
</tr>
<tr>
<td>Ezbet-El-Sharuni</td>
<td>5.01±1.581**</td>
<td>1.00</td>
<td>South</td>
<td>0</td>
</tr>
<tr>
<td>Ezbet-Khalaf</td>
<td>2.81±0.783*</td>
<td>3.25</td>
<td>South-Eastern</td>
<td>22</td>
</tr>
<tr>
<td>Beni-Zeid El-Akrad</td>
<td>2.799±1.526</td>
<td>4.00</td>
<td>South-Eastern</td>
<td>75</td>
</tr>
<tr>
<td>El-Tawabia</td>
<td>4.63±1.564**</td>
<td>1.00</td>
<td>North-Eastern</td>
<td>17</td>
</tr>
<tr>
<td>Manquabed</td>
<td>4.32±1.452**</td>
<td>1.00</td>
<td>North-Western</td>
<td>22</td>
</tr>
<tr>
<td>Ilwan</td>
<td>0.94±0.0412</td>
<td>1.50</td>
<td>North-Western</td>
<td>40</td>
</tr>
<tr>
<td>El-Hadaia</td>
<td>1.66±0.0447</td>
<td>3.50</td>
<td>North-Western</td>
<td>32</td>
</tr>
<tr>
<td>Beni-Hussin</td>
<td>3.370±0.272*</td>
<td>3.00</td>
<td>North-Eastern</td>
<td>10</td>
</tr>
<tr>
<td>Sallam</td>
<td>3.989±2.513*</td>
<td>3.50</td>
<td>North-Eastern</td>
<td>43</td>
</tr>
<tr>
<td>Ezbet-Abo El-Kassem</td>
<td>0.89±0.525</td>
<td>1.50</td>
<td>South-Western</td>
<td>65</td>
</tr>
<tr>
<td>Manfaloute</td>
<td>0.90±0.265</td>
<td>18</td>
<td>North</td>
<td>0</td>
</tr>
</tbody>
</table>

** Highly significant at \(P_/0.01 \)
* Significant at \(P_/0.05 \)

DISCUSSION

The measurement of the toxic hazards from environmental pollution depends in the first instance on the area considered as control. Manfaloute city was chosen as control because it is located 18 kms. to the north of the factory. The previous toxicological studies in this city, revealed no clinical signs, that could point to exposure to any hazardous substance (Abdel-Meguid, et al. 1982). The analytical findings in 11 areas surrounding the superphosphate factory at Manquabad, revealed a highly significant elevation in air sulphur levels in Ezbet El-Akrad (5.193 ppm), Ezbet El-Sharuni (5.011 ppm), El-Tawabiya (4.634 ppm), and Manquabad (4.323 ppm). A significant elevation was recorded in the areas of Sallam (3.909 ppm), Beni-Hussin (3.370 ppm), and Ezbet Khalaf (2.814 ppm). The rest of the examined areas (Beni-Zeid El-Akrad, Ilwan, El-Hadais, and Ezbet Abo-El-Kassem) showed no significant elevation in sulphur levels. The results indicated that the areas which showed highly significant sulphur levels were located not more than one km. from the factory. The areas showed significant elevation of sulphur level were located at a distance of 3 to 3.5 K.ms. from the factory. Areas that showed no significant sulphur levels in the air were either located at a distance more than 3.5 k.ms. or have a deviated position in relation to the factory.

Thus it is obvious from previous results that pollution is reversely related to the distance from the source of industrial pollution. Also wind direction affects the Transmission of air pollutants. In agreement with our results what was mentioned by Krolick and Maylian (1979) that the more toxic effect is obtained in the more nearer place to the Source of pollution. Some authors described the toxic effects that point to endemic sulphurosis mainly affect the respiratory system (Dalhaman and Strandberg, 1961, White, 1964 and Martin and Wiloughby, 1971). Also Ibrahim (1980) and Abdel-Meguid, et al. (1982) recorded the toxic signs of sulphurosis in both sheep and buffaloes in the areas surrounding the superphosphate factory of Manquabad. The primary standard of sulphur in air is (0.03 ppm. annual average) as stated by Purdom (1980). For this reason any notable increase in this average showed be warned for to avoid environmental pollution and resultant toxicity for human-beings and animals in such areas.

REFERENCES
