عمول الصياغ في الإبلار والجاموس الموسمية

أ - الاعتقادات الموسمية

محمود النجار، مديح عثمان، أحمد فراج، شحاته حسنين

1. أجري هذا البحث في المزارع الحكومية التابعة لمحافظة أسيوط (مزرعة الأبلار - بعرب العوامر، ومزرعة الجاموس - بالتحكيم).

2. تم في هذا البحث فحص 169 بقرة، 403 جاموس مرة قبل كل فصل من فصول السنة، وقد أوضحته الدراسة أن نسبة خمول الصياغ في الإبلار كانت 99.29٪، 16.17٪، 12٪ خلال فصل الخريف، الشتاء، الربيع، والصيف مع الترتيب، وكانت النسبة القابلة في الجاموس في نفس الفصول كانت 98.32٪، 16.12٪، 11.16٪، 0.71٪.
OVARIAN INACTIVITY AMONG EGYPTIAN COWS AND BUFFALOES

A- Seasonal variations

(With One Table)

By

M.A. EL-NAGGAR; A.M. OSMAN; A.A. FARRAG and S.H.M. SHEHATA

(Received at 12/11/1984)

SUMMARY

A total of 164 Native cows and 304 buffaloes were examined from Gynaecological point of view throughout the year. The results showed that the incidence of ovarian inactivity in cattle was 29.09 %, 17.16 %, 9.94 % and 12 % during Autumn, winter, spring and summer respectively. The overall incidence of inactive ovaries was 17.2%. The corresponding values obtained for buffaloes were 32.38%, 16.12 %, 12.11% and 21.07 %. The overall incidence of inactive ovaries in buffaloes was 19.42 %.

INTRODUCTION

Infertility problems among cows and buffaloes are directly related to the nutritional needs of the human population as well as to the economic status of the country. WHABY (1964) estimated the economic losses due to infertility problems in Egyptian cows and buffaloes to be about 44 million pounds per year. However, there is few literature showing the incidence of infertility in cows and buffaloes which might be cause of reproductive failure.

In cattle, the incidence of anoestrous was 29.6 % (ZAKI, EL-WISHY, OSMAN and AFIFY, 1963). AFIFY, ABUL-FADEL and ZAKI (1971) found that the inactive ovaries reached 85.75 % in winter and 65.45 % in summer. EL-TAIB (1976) reported that the incidence of ovarian subfunction was 23.5 %.

The incidence of anoestrous due to ovarian inactivity in buffaloes as reported by SHOKIER (1958); EL-SAWAF and SCHMIDT (1962); Schmidt EL-SAWAF and GHARIB, (1963) and EL-WISHY, (1965) were 24.6 %, 18.3 %, 38.7 % and 36.55 % respectively. In Assiut province, FARRAG (1978) found that the incidence of ovarian inactivity in buffaloes was 21.31 %.

The aim of this work was to study the seasonal variation in the incidence of ovarian inactivity among Native cows and buffaloes reared in Governmental farms of Assiut province.

MATERIAL and METHODS

A total of 169 Native cows and 304 buffaloes were included in this study. These animals were raised at ARAB EL-AWAMER and EL-HAWATKA governmental dairy farms. Animals were Gynaecologically examined two times with 10 day interval during each season of the year. Animals with completely static ovaries at the two rectal palpations were considered to be affected with ovarian inactivity.
RESULTS

In both cows and buffaloes the obtained results showed seasonal variations in the incidence of ovarian inactivity table (1).

DISCUSSION

In cattle, our results showed that the highest incidence of inactive ovaries was present during autumn (29.09 %) followed by winter (17.16 %) and summer (12.12 %) while it was lowest during spring (9.9 %). The incidence of inactive ovaries among non-pregnant cows was 55.8 %, 37.6 %, 32.1 % and 25.5 % during winter, summer and spring respectively. In this respect, AFIEFY, et al. (1971) found that ovarian activity decreased from 85.7 % in winter to 66.6 % in summer.

The total incidence of inactive ovaries (17.2 %) allover the year. Nearly similar results were reported by ZAKI et al. (1963), KING et al. (1976) and KRUIJF (1977).

In lower Egypt, BARR (1963), EL-TALEB (1976) and EL-SAWAF and SHALABY (1977) reported that the incidence of inactive ovaries among infertile cows was ranged between 25.4 % and 53.84 %. In Assiut province, SERUR et al., (1981) reported that the incidence of inactive ovaries was 74.73 % in private cases. The difference may be attributed to the different kinds of management and feeding in the governmental farms than in private cases. EL-WISHY (1976) reported that the incidence of inactive ovaries was higher in private cases than in governmental farms in Uganda.

In buffaloes, the obtained values for the incidence of inactive ovaries during the different seasons of the year coincides with those reported by MIKHAIL (1979) in Upper Egypt. ZAKI et al. (1963) suggested that the favourable time for maximal conception in buffaloes occurred during winter. The unfavourable climatological conditions especially the high temperature may be the cause of high incidence of ovarian inactivity during summer. Moreover, GWAIZDAUSKAE (1975) reported that high temperature and relative humidity were accompanied by hormonal changes in blood of Holstein heifers.

The values obtained for the incidence of inactive ovaries in buffaloes were higher than those reported by EL-SAWAF and SCHMIDT (1962) in slaughtered non-pregnant buffaloes. The differences may be attributed to nutritional or environmental factors.

The overall average percentage of buffaloes suffered from inactive ovaries was 19.4 % which was lower than 29 % and 36.55 % reported by BARR, (1963) and EL-WISHY (1965) respectively. On the other hand, the incidence of inactive ovaries in non-pregnant buffaloes was 45 %. This value was lower than 81.22 % reported by SERUR et al., (1981) for the incidence of inactive ovaries in private cases. The difference may be attributed to the well feeding and well management of animals raised in governmental farms. MIKHAIL (1979) found that the incidence of inactive ovaries was higher in buffaloes of bad nutritional condition than those in good condition.

REFERENCES


OVARIAN INACTIVITY SEASONAL VARIATIONS


Table 1: Seasonal variations in the incidence of inactive ovaries in cows and buffaloes

<table>
<thead>
<tr>
<th>Season</th>
<th>N. of cows</th>
<th>N. of cows with Inactive Cystic Endomet.</th>
<th>Total inactive Cystic Endomet.</th>
<th>N. of buffaloes</th>
<th>N. of buffaloes with Inactive ovaries</th>
<th>Total inactive ovaries</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>135</td>
<td>2</td>
<td>127</td>
<td>0.91</td>
<td>104</td>
<td>93.2</td>
<td>210</td>
</tr>
<tr>
<td>Spring</td>
<td>140</td>
<td>1</td>
<td>139</td>
<td>0.81</td>
<td>94</td>
<td>85.9</td>
<td>224</td>
</tr>
<tr>
<td>Summer</td>
<td>129</td>
<td>1</td>
<td>128</td>
<td>0.93</td>
<td>103</td>
<td>95.2</td>
<td>232</td>
</tr>
<tr>
<td>Autumn</td>
<td>110</td>
<td>0</td>
<td>110</td>
<td>0.00</td>
<td>51</td>
<td>61.9</td>
<td>161</td>
</tr>
<tr>
<td>Total</td>
<td>514</td>
<td>14</td>
<td>498</td>
<td>1.91</td>
<td>203</td>
<td>229.5</td>
<td>716</td>
</tr>
</tbody>
</table>