درسات على البصيلات الشعرية والغدد الانبوبيه المتكاملة

في جلد الجمل، رحيد النام

جمال كامل، رودولف شفارتر، عبد الله محمد مصطفى

تم في هذا البحث دراسة توزيع عدد والصفات الهيستولوجية والهستوكيميائية لكُل من البصيلات الشعرية والغدد الانبوبيه المتآكلة لعينات جلد الجمل، وحيد النام في عشرين منطقة تمثل مناطق الجلد المختلفه.

وقد اتضح من هذه الدراسة أن البصيلات الشعرية لجلد الجمل توجد في مجموعات وتختلف عدد هذه البصيلات في كل مجموعه باختلاف مناطق الجلد المختلفه.

وقد وجد أن الغدد الانبوبيه لجلد الجمل تتكون من جزء غدي وقناة مفرغه. وقد قسمت القناة المفرغة إلي جزء اسطواني وجزء كيسي يفتح في بصيلة الشعر قريب من سطح الجلد مباشرة.

ويتركب جدار الجزء المفرز للغدد الانبوبيه من خلايا غدية مكعبة أو عباديه، محاطة بخلايا بشرية عضلية ويتغير شكل الجزء الغدي باختلاف مناطق الجلد المختلفه.

وقد تم أيضا دراسة وجود المواد الدهنية والمواد الكربوهيدراتيه وإنزيمات الفسفرات القاعدى والحصى في البصيلات الشعرية والغدد الانبوبيه المصاحبة لها في جلد الجمل.
STUDIES ON THE HAIR FOLLICLES AND APOCRINE TUBULAR GLANDS IN THE SKIN OF THE ONE-HUMPED CAMEL
(With One Table and 13 Figures)

By G. KAMEL, R. SCHWARZ* and A.M.A. ALI
(Received at 3/7/1986)

SUMMARY

Twenty regions representing the covering skin of 7 adult camels of both sexes were examined for the distribution, number and histological peculiarities of the hair follicles and the tubular glands. The hair follicles of the skin of the camel are arranged in well defined hair groups. The number of the hair follicles in each group is subjected to regional variations. The lowest number of these follicles was present in the skin of the front, medial aspect of the thigh and the ventral aspect of the tail. However, the highest number was observed in the skin samples obtained from the hump, back and the flank regions.

The end-pieces of the tubular glands were highly coiled in the skin of the medial aspect of the thigh and leg and less coiled in the other studied regions. The excretory ducts were peculiarly composed of a narrow long cylindrical and a sacculated portion which opens into the hair follicle near the surface of the skin.

Histochemical investigations were also carried out to demonstrate the neutral lipid and mucopolysaccharide content as well as the alkaline and acid phosphatase activities with both the hair follicles and its accompanied glands.

INTRODUCTION

In Egypt, the camel have an economic value among other livestocks as they considered to be meat and hide producing animals.

Few studies on the hair follicles and the tubular glands of the camel have been reported (DOWLING and NAY, 1962; LEE and SCHMIDT-NIELSEN, 1962; SHAHIN et al. 1974).

The present work aims to provide additional informations, on the hair follicles and the tubular glands within the covering skin of the camel, which may serve for comparative study.
MATERIAL and METHODS

Twenty regions representing the covering skin of 7 adult camels of both sexes were obtained from Bani Adi slaughterhouse. The specimens were clipped and fixed in Bouin's fluid and formalin.

Serial horizontal and tranverse sections of 8 - 10 μm thick, semithin sections and frozen sections (200 μm thickness) were made. The following stains and staining methods were adopted:

Harris haematoxylin and eosin, Periodic acid schiff technique (McMANUS, 1945), Alcian blue (STEDMANN,1950), Sudan black-B stain (LISON and DAGNELIE, 1933) Gomori's calcium cobalt method for demonstration of alkaline phosphatase (GOMORI, 1952) and Gomori's method for detection of acid phosphatase (GOMOR, 1952).

The follicles and the tubular glands were counted in horizontal sections at the sebaceous gland level (microscopic field area was 5.3 mm²).

RESULTS

The hair coat of the one-humped camel is made up of compound hair follicles. They are arranged in a well defined groups (Fig. 2). Each group is formed of a large and several secondary smaller follicles. The larger follicle tends to extend more deeper than the smaller variety (Fig. 3). The compound follicle become branched just above the level of the sebaceous glands.

The number of the hair follicles in each group is subjected to regional variations fluctuating between a minimum of 3 and a maximum of 35 hair follicles (Table 1).

The hair follicles of each hair group open into a common follicle (Fig. 4) just above of the sebaceous glands. Both primary and secondary hair follicle is provided with two sebaceous glands, the internal root sheath of the primary and secondary hair follicle formed spiral folds, just below the opening of these glands (Fig. 5).

Several pigments are demonstrated within the cells of the hair pulps and the ducts of the tubular glands. The Arrector pili muscles are branched at its deeper portion and provide strands which connect each of the secondary follicle.

Each primary hair follicle is associated with a single tubular gland (Fig. 3). The latter occupies the space between the corresponding hair follicle and the Arrector pili muscle.

The shape of the glandular portion of the tubular glands varies from one region to another (Fig. 1). They are less coiled at the front, back, lateral aspect of the abdomen, dorsal and ventral aspects of the tail, lateral aspect of the thigh and lateral aspect of the metatarsal. On other hand, they are highly coiled at the medial aspect of the thigh and leg as well as in the hump region. However they are moderately coiled in the other studied body regions. The secretory endpieces are composed of a single layer of glandular cells, myoepithelial cells and thick basal lamina (Fig. 6). The glandular epithelium is columnar or cuboidal in shape and range from 20 - 25 μm in height. The cell boundaries are indistinct, the nuclei appear rounded or oval in shape and basally situated. The myoepithelial cells (3 μm in diameter and 60 μm in length), are spindle in shape. Some glandular tubules contained an irregular luminal surface due to uneven projection and pinched off appearance of the apical end of the cells (Fig. 7).
HAIR FOLLICLES AND APOCRINE TUBULAR

The excretory ducts of the tubular glands were composed of a narrow long cylindrical and short sacculated portions (Fig. 11). The long cylindrical portion is about 30 μm in diameter. It follows a straight course paralleled to the hair follicles. It is lined with two layers of cells, viz., inner cuboidal, and outer slightly flattened pigmented cells. The sacculated portion is about 90 μm in diameter. It opens into the common follicle near the epidermis (Fig. 8). The wall of the sacculated portion is formed of stratified epithelium of 3-4 cell layers. The superficial cells of the latter are large polyhedral, contain large rounded vesicular nucleus and the cytoplasm is lightly stained and contains basophilic granules of different sizes (Fig. 9). However, the basal cell layer is composed of highly pigmented cuboidal cells. The connective tissue surrounding the sacculated portion is rich in blood capillaries.

The dermal papillae and the cells of the lower portion of the outer root sheath are positive for alkaline phosphatase activity. The Arrector pili muscle and the endothelium of the blood capillaries show strong enzymatic activity for this enzyme. The apical portion of the myoepithelial cells of the glandular end-pieces of the tubular glands and the sebaceous glands also demonstrate strong alkaline phosphatase activity. The sacculated portion of the excretory ducts show strong reaction for this enzyme however, weak reaction is observed within the long cylindrical portion (Fig. 10).

The internal root sheath and the lower portion of the hair pulp showed strong reaction for acid phosphatase, the secretory end-pieces and the long cylindrical portion of the tubular glands showed moderate reaction for this enzyme, while the sacculated portion show strong reaction. The Arrector pili muscles showed negative reaction for this enzyme (Fig. 11).

No sudanophilic substances could be demonstrated within the hair follicles or in the tubular glands. The sudanophilic materials are observed within the sebaceous glands and the common opening of the hair follicle (Fig. 12). PAS-positive materials are observed at the proximal portion of the glandular cells of the tubular glands (Fig. 13) the myoepithelial cells and the thick basal lamina show slight reaction for PAS.

The excretory ducts present negative PAS-reactions. The peripheral cells of the sebaceous glands and the cells of the outer root sheath of the hair follicles show PAS-positive granules. The connective tissue fibers are slightly reacted.

DISCUSSION

The histological examination of the skin of the one humped camel revealed that hair coat is made up of compound hair follicles. The compound follicle become branched just above the level of the sebaceous glands. Branching of the hair follicle is similar to that found in sheep (HARDY and LYNE 1956).

The follicular folds were present in both primary and secondary hair follicles, possibly to maintain the sebum at upper level of the hair follicle to perform its protective functions. The present study revealed that the shape of the glandular portion varies from one region to another. Difference in hair growth may partly explain difference in the morphology of the tubular glands existing between body region (PAN, 1963).

The skin of the camel showed a much lower density of tubular glands than that reported in cattle (HAFEEZ et al., 1955; JENKINSON and NAY, 1975).

The present study revealed that the wall of the secretory end-pieces is formed of single layer of secretory epithelial cells, myoepithelial cells and thick basal lamina. These

finding are similar to those described in other animals (LYNE and HOLLIS, 1967; JENKINSON, 1977; MAHGOUB et al. 1977).

It is well known that most of the large animals lose heat by evaporative cooling and consequently their water requirement are high when environmental temperature are high. However, camels which live under severe adverse condition are well known for the ability to survive for long periods without water (DOWLING and NAY, 1962). The presence of the secretory end-pieces of the apocrine glands in the more superficial part of the dermis of the skin, which is better supplied with blood than the lower part allow a relatively higher rate of sweating (MAHGOUB et al. 1977). So the presence of the tubular glands in the deeper layer in the dermis in the skin of the camel is to minimize the rate of evaporation. On the other hand the mucopolysaccharide nature of the apocrine tubular glands lead us to conclude that these tubular glands do not play a major role in the control of body temperature. Moreover, the histological peculiarities of the secculated part of the excretory duct which has been reported for the first time may lead us to suggest that this part make reabsorption of the fluid content of the secretory material to minimize water evaporation.

Table (1)

Hair follicle and apocrine tubular gland population of the one humped camel

<table>
<thead>
<tr>
<th>Regions</th>
<th>No. of hair follicles per group</th>
<th>No. of hair Groups per/cm²</th>
<th>No. of apocrine tubular glands per/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>6±2</td>
<td>95±3</td>
<td>152±10</td>
</tr>
<tr>
<td>Lateral aspect of the neck</td>
<td>11±3</td>
<td>48±5</td>
<td>130±9</td>
</tr>
<tr>
<td>Dorsal aspect of the neck</td>
<td>14±2</td>
<td>452±7</td>
<td>220±14</td>
</tr>
<tr>
<td>Ventral aspect of the neck</td>
<td>13±2</td>
<td>140±10</td>
<td>205±15</td>
</tr>
<tr>
<td>Lateral aspect of the shoulder</td>
<td>12±2</td>
<td>95±5</td>
<td>230±14</td>
</tr>
<tr>
<td>Lateral aspect of the forearm</td>
<td>13±2</td>
<td>95±6</td>
<td>187±13</td>
</tr>
<tr>
<td>Medial aspect of the forearm</td>
<td>14±3</td>
<td>33±3</td>
<td>141±10</td>
</tr>
<tr>
<td>Lateral aspect of the thorax</td>
<td>12±4</td>
<td>40±6</td>
<td>130±7</td>
</tr>
<tr>
<td>Lateral aspect of the abdomen</td>
<td>11±3</td>
<td>45±9</td>
<td>135±12</td>
</tr>
<tr>
<td>Axilla</td>
<td>13±2</td>
<td>120±5</td>
<td>240±12</td>
</tr>
<tr>
<td>Hump</td>
<td>25±3</td>
<td>114±6</td>
<td>290±10</td>
</tr>
<tr>
<td>Back</td>
<td>20±5</td>
<td>96±12</td>
<td>224±16</td>
</tr>
<tr>
<td>Flank</td>
<td>35±3</td>
<td>75±9</td>
<td>234±12</td>
</tr>
<tr>
<td>Lateral aspect of the thigh</td>
<td>11±4</td>
<td>70±5</td>
<td>210±15</td>
</tr>
<tr>
<td>Medial aspect of the thigh</td>
<td>5±2</td>
<td>65±12</td>
<td>200±13</td>
</tr>
<tr>
<td>Lateral aspect of the leg</td>
<td>12±3</td>
<td>90±5</td>
<td>180±10</td>
</tr>
<tr>
<td>Medial aspect of the leg</td>
<td>6±2</td>
<td>65±4</td>
<td>169±7</td>
</tr>
<tr>
<td>Lateral aspect of the metatarsal</td>
<td>12±5</td>
<td>34±9</td>
<td>160±12</td>
</tr>
<tr>
<td>Dorsal aspect of the tail</td>
<td>10±3</td>
<td>90±7</td>
<td>170±9</td>
</tr>
<tr>
<td>Ventral aspect of the tail</td>
<td>3±1</td>
<td>45±3</td>
<td>135±6</td>
</tr>
</tbody>
</table>

REFERENCES

LEGENDS

Fig. (1): Shows the variations in the shape of the tubular glands.
- a- Front
- b- Lateral aspect of abdomen.
- c- Neck
- d- Ventral aspect of abdomen.
- e- Medial aspect of thigh
- f- Hump.

Fig. (2): Horizontal section of camel skin showing groups of hair follicles, back region.
(16 E. x 160).

Fig. (3): Vertical section of camel skin. The coiled tubular gland accompanied the large hair follicle.
(16 E. x 1607)

Fig. (4): Horizontal section of camel skin showing the common hair follicle.
(16 E. x 400).

Fig. (5): Vertical section of camel skin showing the follicular fold.
(16 E. x 400).
