قسم الباثولوجيا
كلية الطب البيطري - جامعة أسيوط
رئيس القسم: أ.د. حمدي سالم

تحضير وتقديم لقاح زيمي ضد مرض ميكوبلازما الطيور
2- تقييم اللقاح في الوقاية من التهاب الأكياس الهوائية في بداري التسمين

عبد اللطيف سوسي، صلاح موسى، عادل سليمان، إبراهيم سكر

تمت هذه الدراسة على كتاكيت من أمهات محصنة باللقاح الزيمي وأخرى غير محصنة
وتم تجميع مجموعات منها عند عمر أسبوعين ثم تم التدوي الصينية عند عمر سنتين
أسابيع.

يتم تقنيم المناعة سيرولوجيا بالإضافة إلى الوقاية من التهاب الأكياس الهوائية، وأخذ
الزيادات الاستيرونية في الأوران ومعامل التحويل الغذائي في الاعتبار اتضح أن المجموعات
المحمصة الناتجة من أمهات محصنة أعطت أفضل النتائج.

قسم أمراض الدواجن - كلية الطب البيطري - جامعة أسيوط
DEPT. OF PATHOLOGY,
FACULTY OF VET. MED., ASSIUT UNIVERSITY,
HEAD OF DEPT. PROF. DR. H.A. SALEM.

EVALUATION OF INACTIVATED MYCOPLASMA
GALLISEPTICUM OIL-EMULSION BACTERIN
II. PROTECTION AGAINST AIR-SACCULITIS IN BROILERS
(With 3 Tables)

By
A.H. BAYOUMI; S. MOUSA*; A. SOLIMAN* and I.H. SOKKAR*
(Received at 21/11/1987)

SUMMARY

The usage of Mycoplasma gallisepticum oil-emulsion bacterin
had a noticeable effect in protection of chicks against air
sacculitis. This study was carried out on chicks originating
from vaccinated parents. Serum plate agglutination and haema-
gglutination inhibition titres, the gain in body weight and feed
consumption rate were superior in vaccinated broilers from
vaccinated dams. It could be concluded that the vaccination
of the parents necessitate vaccination of the broilers to attain
optimal protection against Mycoplasma gallisepticum infection.

INTRODUCTION

Transovarian transmission of Mycoplasma gallisepticum MG from infected dams to thier
progeny has been reported, (FABRICANT, et al. 1959; JERSTAD, 1964; YODER, 1980 and
KLEVEN, 1984).

The aim of several workers was to break the cycle of MG infection in breeding flocks,

Since transovarian transmission complicate the problem of MG eradication program, several
reports described inactivated bacterin with or without oil-emulsion for controlling air sacculitis
in broilers, YODER, 1980. YODER, et al. 1984 reported that broiler chicks vaccinated at 11
to 15 days of age acquired significant protection against air-sacculitis. Hens vaccinated twice
with MG oil-emulsion bacterin before the egg production revealed significant protection against
MG egg transmission with a high titre of yolk antibodies, that protect progeny from the infection,

This work describe further investigations on the effect of MG bacterin on protection
against air sacculitis in broilers, in addition its effect on feed consumption and body weight.

MATERIAL and METHODS

Bacterin preparation was previously described, SOLIMAN, et al. 1987.

Experimental chicks:

Day-old meat-type chicks were supplied by Kena Governamental farm. 60 chicks originating from vaccinated dams, oil-emulsion bacterin SOLIMAN, et al. 1987, were divided into three groups (A, B, C) and 60 chicks from non vaccinated parents were also divided into three similar groups (D, E, F).

Challenge:

Birds were challenged at 6 weeks of age intratracheally by 0.2 ml of virulent R strain of MG approximately 2x10^7 colony-forming unit/bird.

Serological tests:

Dead and sacrificed birds:

Dead and sacrificed birds were subjected to post-mortem examination and isolation of MG.

Evaluation of air-sac lesions:

The system reported by YODER, et al. 1984, was used for scoring of air-sac lesions.

Media, strains and antigens:

For isolation of MG, Brain-heart infusion broth and agar (Oxoid) was prepared and supplemented with horse serum, yeast extract, NAD, thallus acetate and penicillen G sodium, SOLIMAN, 1985.

Virulent R strain of MG was kindly supplied by Prof. Dr. E.A. FREUNDT, FA0/WHO, Archus, Denmark.

MG stained antigen produced by Intervet. Lab. Holland.

MG HI antigen was locally prepared, SOLIMAN, 1982.

Experimental design:

Birds of group A&D were vaccinated by MG bacterin at 2 weeks of age, then challenged 4 weeks later. Birds of group B&E served as challenged non vaccinated birds, while those of group C&F were non vaccinated, non challenged controls.

Birds of all groups were weighed weekly and food consumption was recorded. All experimental birds were sacrificed at 8 weeks of age.

RESULTS

Air sacculitis was carefully examined and scored as in table 1 according to the following criteria observed in affected birds. Transparent, thin, and clear was registered as normal (0), slight thickening and opacity (1), naked eye thickening associated with yellowish exudation in more than one portion (2), marked and extensive thickening involving the abdominal and thoracic air sacs (3), but severe, generalized and diffuse thickening of all air sacs (4).
MYCOPLASMA VACCINATION IN BROILERS

There was a marked difference between the incidence of air sacculitis in the unvaccinated controls (group B, and E), and that in the vaccinate birds (group A&D). Insignificant difference in the incidence and severity of air sacculitis was observed between the unvaccinated challenged chicks originating from vaccinated parents (30%) and those from unvaccinated dams (35%). In addition two cases died from each group during the eighth week with severe lesions of air sacculitis. Unvaccinated, unchallenged groups (CMF) showed moderate lesions of air sacculitis (20%).

Our serologic findings revealed a detectable antibodies in sera of examined birds by serum plate agglutination test.

Relatively higher haemagglutination inhibition titres were observed in baby chicks originated from vaccinated parents. The highest haemagglutination inhibition titres were observed in group A and D as shown in table 2.

Regarding the results of body weight and feed conversion rate as shown in table 3, the vaccinated birds revealed superior results.

DISCUSSION

HAYATSU, et al. 1974, 1975 confirmed that protection against respiratory tract infection could not be relatively attained but protection against the development of air sacculitis was possible and practical.

In this study, our findings showed that the challenge with virulent strain of Mycoplasma gallisepticum resulted indifferent grades of air sacculitis depending upon the immune status of the birds. Higher incidence and marked severe air sacculitis were observed in non vaccinated birds. Similar findings were also reported, YODER, et al. 1984.

According to the results of serological tests, incidence and severity of air sac lesions, it was clear that chicks hatched from vaccinated parents showed higher antibody titres. The titres declined by age affording no durable protection. On the other hand vaccinated broilers from vaccinated parents showed a remarkable higher rate of protection in comparison with those originating from non vaccinated dams.

The results in this investigation shown in table 3 pointed out that not only the gain in body weight but also the feed conversion rate were correlated to the incidence and severity of air sacculitis. RETSON, 1980.

Although the vaccination of parent flock resulted in high haemagglutination inhibition titre in the progeny as reported by many workers, optimal and constant protection of broilers could be attained by their vaccination.

REFERENCES

| Table (1) |
| Results of Air sac lesions ASL in different groups at 8 weeks of age |

<table>
<thead>
<tr>
<th>Group</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASL score</td>
<td>0.1</td>
<td>1.2</td>
<td>0.8</td>
<td>0.3</td>
<td>1.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Air Sacculitis</td>
<td>1/20-5%</td>
<td>6/20-30%</td>
<td>4/20-20%</td>
<td>2/20-10%</td>
<td>7/20-35%</td>
<td>4/20-20%</td>
</tr>
</tbody>
</table>

Table (2)

Sero logical response in vaccinated and challenged broilers

<table>
<thead>
<tr>
<th>Group</th>
<th>1 day</th>
<th>2 week</th>
<th>4 week</th>
<th>8 week</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80</td>
<td>22</td>
<td>75</td>
<td>280</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>24</td>
<td>7</td>
<td>110</td>
</tr>
<tr>
<td>C</td>
<td>75</td>
<td>10</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>D</td>
<td>22</td>
<td>10</td>
<td>36</td>
<td>216</td>
</tr>
<tr>
<td>E</td>
<td>25</td>
<td>7</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>F</td>
<td>21</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Table (3)

Weight of experimental birds and feed conversion rate

<table>
<thead>
<tr>
<th>Group</th>
<th>Age in weeks</th>
<th>feed conversion rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>145+</td>
<td>340</td>
</tr>
<tr>
<td>B</td>
<td>142</td>
<td>332</td>
</tr>
<tr>
<td>C</td>
<td>143</td>
<td>330</td>
</tr>
<tr>
<td>D</td>
<td>140</td>
<td>310</td>
</tr>
<tr>
<td>E</td>
<td>145</td>
<td>300</td>
</tr>
<tr>
<td>F</td>
<td>145</td>
<td>305</td>
</tr>
</tbody>
</table>

+ weight in grams.
++ Total feed conversion = Feed : Live weight.