تأتي الاستخدام المبكر للهرمون الحاث على إفراز الهرمون الحاث للمعالن في فترة ما بعد الولادة على الكفاءة المناسبة في الأبقار.

فاطن لبيب، محمد العزيز، سيد شعراوي

أجريت هذه الدراسة على عدد أربعين بقرة في اليوم العاشر حتى اليوم الثاني عشر بعد الولادة، وقد قسمت هذه الأبقار إلى مجموعتين، أُشتملت المجموعة الأولى على أربعين بقرة حُقتن كل واحدة منها عطشًا مرة واحدة بواسطة 100 ميكروجرام من الهرمون الحاث على إفراز الهرمون الحاث للمعالن (سيسترويلين). بينما استعملت المجموعة الثانية (11 بقرة) كضوابط لمقارنة النتائج، كذلك تم قياس البروجيسترون في بلامسنا الدم قبل وبعد العلاج، وفحصت الحيوانات لظهور الشيق وتشخيص الحمل بعد تكرار الأشخاص الملتقيح الطبيعي مع الطلائق.

وقد أوضحت النتائج أن 71.9% من الحيوانات المعالجة بالهرمون أظهرت المياض في حدوث التبويض في اليوم 18 بعد الولادة، بينما كان حدوث التبويض في المجموعة الضابطة بنسبة 18.2% في اليوم 18 بعد الولادة، كما ظهرت النتائج أن المجموعة المعالجة التي كان فيها التبويض مبكرا حدث فيها الحمل بعد 82 يوما بعد الولادة مقارنة بالمجموعة الضابطة التي حدث فيها الحمل بعد 105 يوما بعد الولادة.

كما أوضحت نتائج قياس البروجيسترون في بلامسنا الدم أن نسبته كانت أقل من 1 نانوجرام/مل قبل العلاج في كلتا المجموعتين ثم ارتفعت لتصبح 43.5 ± 5.3 نانوجرام/مل بعد عشريء أيام من العلاج في المجموعة المعالجة بالهرمون مقارنة ببئرها في المجموعة الضابطة (13.5 ± 1.8 نانوجرام/مل).
EFFECT OF ADMINISTRATION OF GONADOTROPIN-RELEASING HORMONE (Gn-RH) DURING EARLY POSTPARTUM PERIOD ON REPRODUCTIVE PERFORMANCE OF DAIRY COWS
(With 3 Tables)

By
FATEN LABIB; M.A. EL-AZAB and S.M. SHARAWY
(Received at 21/9/1987)

SUMMARY

This field trial was performed to investigate the effects of early postpartum treatment with Gn-RH on ovarian activity and subsequent reproductive parameters in dairy cows. The study was carried out on 40 dairy cows between day 10 and 12 postpartum.

The cows were randomly assigned to two groups. The first group (24 cows) received a 12-hour injection of 100 mcg Cystorelin (Gn-RH Abott laboratories, USA), while the second group (16 cows) received a placebo and served as control. Plasma progesterone levels were determined pre and post-treatment to monitor ovarian cyclicity and establishment of luteal function. The cows were checked for oestrus and allowed freely for natural service and finally examined for pregnancy.

In the group that received Gn-RH, 91.7% of the treated cows showed ovarian cyclicity and ovulation occurred at 18.81±1.37 days pp compared to 68.6% and 28.90±2.44 days pp. in the control group respectively. The cows in the Gn-RH treated group conceived after 82.50±3.04 days pp. Vs. 101.45±6.20 days in the control group. The plasma progesterone of cows prior to treatment was less than 1.0 ng/ml while ten days after Gn-RH or placebo treatment, the values were 0.81±0.13 ng/ml and 3.45±0.34 ng/ml in the control and Gn-RH group respectively.

INTRODUCTION

The influence of early post-partum (pp) breeding on the economic efficiency of dairy cattle has been extensively studied (BRITT, 1975). Maximum lifetime production of milk and offspring can be achieved if calving intervals are 12 months or less. In order to accomplish this, cows should conceive not later than 85 days pp (BRITT, 1975). Often farmers are usually asked to breed dairy cattle early pp in order to reduce days open, as shorter calving intervals result in higher average milk production per day (BRITT, 1975). Many factors, however, prevent early rebreeding (CALLAHAN, ERB, SURVE and RANDEL, 1971). It has also been shown that the frequency of the occurrence of oestrus in the early pp period appears to be related to subsequent fertility (THATCHER and WILCOX, 1973). Various hormonal treatments have been tested in an attempt to induce early pp oestrus in both dairy and beef cattle (BRITT, KITTOK and HARRISON, 1974 and NASH, BALL and OLSON, 1980).

Recently, methods aimed at initiating early pp ovarian activity have centered on the use of Gn-RH (BOSU, 1982). In the early pp dairy cow, several reports have documented luteinizing hormone (LH) release following Gn-RH administration (Schallenberger, Schams and ZOTTMEIER, 1978 and AZZAZI, KROUSE and GARVERICK, 1980). The LH release in response to Gn-RH treatment is not normally restored until seven to ten days pp (FERNANDS, THATCHER, WILCOX and CALL, 1978 and FOSTER, LAMMING and PETERS, 1980). However, Gn-RH-induced ovulation is significantly affected by follicle size and by plasma estradiol 17-beta level at the time of treatment (Kesler, GARVERICK, YOUNGGUIST, ELMORE and BIERSWAL, 1978 and ZAIED, GARVERICK, BIERSWAL, ELMORE, YOUNGGUIST and SHARP, 1980). A follicle must be greater than 10 mm in diameter in order to ovulate in response to Gn-RH (GARVERICK, ELMORE, VALLAINCOURT and SHARP, 1980). It has been revealed that the pituitary gland of milked cows secretes reduced amount of LH (WEBB, LAMMING, HYAYNES, HAFS and MANN, 1977) but not FSH (SCHallenberger, et al. 1978) during the first 10 days pp. This pituitary refractoriness is overcome by time or can be overridden in dairy cows (RILEY, PETERS and LAMMING, 1981) by intermittent low dose injections of Gn-RH. This indicates that the pituitary gland when given appropriate stimuli is able to resume activity even during early pp.

This study was performed to investigate the effects of early pp treatment with Gn-RH on ovarian activity and subsequent reproductive parameters in dairy cows without puerperal complications. Plasma progesterone levels were also determined pre and post-treatment with Gn-RH to monitor ovarian cyclicity and establishment of luteal function.

MATERIAL and METHODS

This field trial was carried out between April 1986 and March 1987. Ten to 12 days pp, 40 dairy cows (Friesian cows and their crosses) belonging to a private farm at Sharkia Province were randomly assigned to two groups. Twenty four of these cows (Group A) received a single I/M injection of 100 mcg Cystorelin (Gonadorelin, Abott Laboratories, N. Chicago, IL, USA) between day 10 and day 12 pp inclusive. The remaining 16 (Group B) received a placebo and served as controls. The cows averaged 5 years of age and only cows which had experienced normal parturition were used in this investigation. All cows were milked twice daily. The internal genitalia of all cows in both groups were examined at 10 to 12 days pp by rectal palpation and heparinized blood samples were collected just before injection of Gn-RH. Following treatment the animals were examined rectally every other day to monitor ovarian cyclicity and detect ovulation. Ten days after treatment, genitalia were again evaluated by rectal palpation and blood samples were also taken. All blood samples were centrifuged as soon as possible after collection and the plasma was stored frozen at -20°C until analysed for plasma progesterone concentration by using commercial progesterone kits (Kallestad Laboratories Incorporated RIA, USA) according to ABRAHAM (1977).

The animals were checked for oestrus twice daily and two months after parturition they were allowed freely for natural service by fertile bull (20 cows/bull). Forty five days after natural mating, the animals were checked for pregnancy.

Statistical analysis was done according to SNEDECOR and COCHRAN (1967).
RESULTS

Significant statistical differences were noticed between the two groups for all the reproductive parameters evaluated except in days from calving to first observed oestrus (table 1 & 2).

In the group received Gn-RH, 22 (91.7%) out of 24 cows exhibited cyclicity, whereas, in the control group only 11 (68.8%) out of 16 cows showed oestrus. Moreover, in the Gn-RH treated group 13 animals (54.2%) showed ovulations on the second day after treatment (13.70±0.60 days pp) and the other 9 cows (37.5%) ovulated 26.11±0.42 days pp with an overall mean of 18.81±1.37, VS. 28.90±2.44 days in the control group. Meanwhile, the cows showed earlier ovulation with Gn-RH treated group conceived after 82.50±3.04 day pp and this was significantly less than 101.45±6.20 days in the control group. On the other hand, cows treated with Gn-RH and showed ovulation after 26.11±0.42 (9 cows), had 100.44±7.12 days period from calving to conception which is significantly more than those had earlier ovulation in the same group and nearly simulate that of control group. The overall mean of the service period of the Gn-RH treated group was 89.81±3.74 days, which is 12 days less than that of the control group, but this difference lacks statistical significance.

Regarding the plasma progesterone of cows under experimentation, it has been shown that prior to treatment (10-12 days pp) all cows had low circulating progesterone levels of 0.97±0.09 ng/ml and 0.94±0.06 ng/ml in the control and Gn-RH treated groups respectively. However, ten days after Gn-RH or placebo treatment, such values were 0.81±0.13 ng/ml and 3.45±0.34 ng/ml in the control and Gn-RH groups respectively. The latter values showed statistical difference (table 1).

Table 3, illustrates the intervals from parturition to conception in Gn-RH treated and control cows. It was evident that by day 95 pp, 18 out of 22 cows (81.8%) got conceived, while only 6 out of 11 cows (54.5%) were positively pregnant in the control one.

Table (1)
Reproductive parameters of control and Gn-RH treated cows on 10-12 days post-partum

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>Gn-RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of cows</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>No. of cycled cows</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Interval (days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calving to 1st ovulation</td>
<td>28.90±2.44a</td>
<td>18.81±1.37b</td>
</tr>
<tr>
<td>Calving to 1st oestrus</td>
<td>39.40±3.20</td>
<td>40.20±2.50</td>
</tr>
<tr>
<td>Calving to conception</td>
<td>101.45±6.20</td>
<td>89.81±3.74</td>
</tr>
<tr>
<td>Plasma progesterone (ng/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-treatment</td>
<td>0.97±0.09</td>
<td>0.94±0.06d</td>
</tr>
<tr>
<td>post-treatment</td>
<td>0.81±0.15c</td>
<td>3.45±0.39d</td>
</tr>
</tbody>
</table>

a and b sig. diff. from each other at 1% level.
c and d sig. diff. from each other at 1% level.
+ Standard error.
Table (2)
Effect of earlier ovulation on the length of open
days pp of Gn-RH treated cows

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Gn-RH treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calving to 1st ovulation (days)</td>
<td>13.70±0.6</td>
</tr>
<tr>
<td>No. of cows</td>
<td>13</td>
</tr>
<tr>
<td>Calving to conception (days)</td>
<td>82.50±3.04</td>
</tr>
<tr>
<td>No. of cows</td>
<td>13</td>
</tr>
</tbody>
</table>

a and b significantly different from each other at 5% level
+ Standard error.

Table (3)
Interval from parturition to conception in control
and Gn-RH treated cows

<table>
<thead>
<tr>
<th>Interval</th>
<th>Control (n=16)</th>
<th>Gn-RH (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Less than 70 days</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>70 - 75 days</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>76 - 85 days</td>
<td>2</td>
<td>18.18</td>
</tr>
<tr>
<td>86 - 95 days</td>
<td>4</td>
<td>36.36</td>
</tr>
<tr>
<td>96 - 105 days</td>
<td>1</td>
<td>9.09</td>
</tr>
<tr>
<td>106 - 125 days</td>
<td>3</td>
<td>27.28</td>
</tr>
<tr>
<td>126 - 150 days</td>
<td>1</td>
<td>9.09</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>100</td>
</tr>
</tbody>
</table>

DISCUSSION
Prompt return to oestrus cyclicity following parturition has been recognized as a major factor involved in obtaining optimal reproductive efficiency. An increased number of oestrus cycles before the onset of the breeding season is related to a decrease in the number of services per conception during the breeding season (THATCHER and WILCOX, 1973). Therefore, administration of Gn-RH to pp dairy cows has been shown to stimulate the release of pituitary LH, resulting in ovulation and resumption of regular oestrus cycles (BRITT, et al., 1974 and ZOLMAN, CONVEY and BRITT, 1974).

The present preliminary results indicate that under the condition of this experiment, large single dose of Gn-RH (100 mcg) at 10-12 days pp did increase the number of cows ovulating at an average of 18.81±1.37 days following pp compared with 28.90±2.44 days.

in control. Similar finding was observed by BOITI, BEGHELLI, SIMONTACCHI, OLIVIERI, CAGGIONI and MICALE (1980) and BOSTEDT, PECHER and STROBL (1980). Additionally, the interval to first oestrus in both groups of cows was closely similar. However progesterone values at 10 days post-treatment showed that Gn-RH had beneficial effect on luteal tissue induction on the ovaries of these postpartum cows, since the plasma progesterone levels markedly rose from 0.94±0.06 ng/ml to 3.45±0.34 ng/ml days following treatment with Gn-RH. These findings are parallel with observations of RICHARDSON, ARCHBALD, GALTON and GODKE (1983). Moreover, improvement in some other reproductive parameters also was noticed. The interval from parturition to conception was significantly less (82.5±3.04 days) in cows showed earlier ovulation in the Gn-RH treated group compared to control one (101.8±6.20 days). These findings are consistent with results of BRITT, HARRISON and MOWROW (1977), BOSTEDT, et al. (1980) and NASH, et al. (1980). On the contrary, GUNZLER, SCHATZLE and SCHMIDTLINDE (1974) and KESLER, et al. (1978) have demonstrated no beneficial effects of Gn-RH administration in the early pp period.

It is evident from the previous discussed data on the use of Gn-RH in early postpartum period that the findings regarding reproductive performance are equivocal. Nevertheless, it can be deduced from the present study that Gn-RH treatment schedule might be considered economically rather beneficial and promising for future use of this drug in dairy cows as an agent enhancing pp ovarian cyclicity providing that early breeding should be applied.

ACKNOWLEDGEMENT

The authors would like to express their thanks to Prof. Dr. B. Gustafsson, head department of Veterinary Clinical Medicine, Faculty of Vet. Med., Univ. of Illinois, USA for the generous supply of the Cystorelin.

REFERENCES

Schallengerberg, E.; Schams, D. and Zottmeier, K. (1978): Response of lutropin (LH) and fullitrophon (FSH) to administration of gonadotrophin (Gn-RH) in pregnant and postpartum cattle including experiments with prolactin suppression. Theriogenology 10: 35.52.

