ملاحظات كLINيكية ومعطيات Histoپathологية على تنكراز الكبد في الأغنام

علي السباعي، محمد خيري، علام نفادي، عبد الخالق الصاوي

عدد أجري البحث على 35 رأسا من الأغنام الأورسية أخذت من بينها عشة أغنمـام سليمة صحة لمقارنة النتائج بينما ظهرت على الخمسة والعشرون الأحـر العلامات المرضية لتنكراز الكبد.

أثبتت الفحوصات البكترiologicalية على الميكروب المسبب ووصف سببها كما دراست بويضات السوائل الكبدية في باز الأغنام المصابة. أفادت التحاليل المعملية بنفس ملاحظات زلال الدم وزيادة في النشاط أنزيمات الدم الدالة على استخدام الكبد. أضافت الدراسات الهيستپاتولوجية أن هناك تنكراز في خلايا الكبد مع احتمالاً ورضح في خلايا الكبد كما دلت على وجود الميكروب المسبب مرتب في سوائل الأغنام.

قسم البياثولوجيا - كلية الطب البيطري - جامعة أسيوط
قسم الميكروپيولوجيا - كلية الطب - جامعة أسيوط
CLINICAL, LABORATORY AND HISTOPATHOLOGICAL OBSERVATIONS ON NECROTIC HEPATITIS IN SHEEP
(With 1 Table & 4 Figs.)

By
A. EL-SEBAIE; M.K. IBRAHIM*; A. NAFADY* and A. TAMAWY**
(Received at 1/10/1987)

SUMMARY

Thirty-five sheep were included in this study, 10 animals were healthy and kept as control, while 25 animals were diseased and showed the signs of necrotic liver disease. Bacteriologically the causative microorganism Cl. novyi was isolated and the toxins were identified. Fasciola eggs were detected in the faeces of diseased sheep. A marked drop in values of serum total protein, and marked increase in values of both serum GOT and GPT enzymes. Micromorphological examination indicated hepatic cell degeneration and focal necrosis, congestion and oedema. The organism arranged single or in pairs could be also detected.

INTRODUCTION

Necrotic hepatitis (Black disease) is mainly a disease of sheep, but in some areas it is also of significance in cattle and sheep and caused by toxins of Clinovyi elaborated in damaged liver tissue (WILLIAMS, 1962). Cl. novyi strain type B is the cause of disease but the intervention of necrotic process in the liver which enhance the organism to proliferated and produce lethal amounts of toxins is commonly stated to be a precipitating cause (GIBBONS, 1965). The disease has been produced experimentally in sheep by administration of spores of Cl. novyi after prior infection with liver fluke. Although field outbreaks of the disease were usually precipitated by invasion of the liver by immature liver fluke (BAGADI and SEWELL, 1978).

There was an increasing number of cases being reported in which no specific precipitating lesions were detected (WILLIAMS, 1962). The disease was first reported in Australian but subsequently has been recognised in New Zealand, United States, Europa and Africa (BAGADI, 1974). The organism passes through the intestinal wall and lodge in the liver where they remain as latent infection. The anaerobic environment produced by the migration liver flukes activate the organism which release exotoxins and causes hepatic necrotic lesion and fatal toxemia (RUNNEL, 1965). The aim of this investigation is to study the incidence of black disease in between native breed sheep through trials to isolate and identify the causative micro-organism. Moreover the macromorphological and histopathological changes were described and discussed. Additional informations on the extent of alteration in the biochemical aspect of liver function were also aimed.

* Dept. of Pathology, Fac. of Vet. Med., Assiut Univ.
** Dept. of Microbiology, Fac. of Med., Assiut Univ.

Animals:
A herd of 300 native breed osemi sheep of both sexes were included in this study. Animals belonging to El-Hawatika governamental animal production station. Twenty-five sheep showed the signs of disease and were used for the clinical studies, while ten sheep apparently healthy and were kept as a control group. Blood sample was collected from each animal for serum separation and was used for the determination of total serum protein, serum GOT, and serum GPT.

Methods:
Collected serum samples were used for the determination of serum total protein, serum GOT and serum GPT using reagent kits, (Blomerux*) and measured by means of Pye-Unicomp spectrophotometer Mod. 8800. wave length was adjusted for each parameter.

Histopathological examination:
Liver samples from all cases were taken, fixed in 10% neutral buffer formalin and processed for paraffin section as usual. Haematoxylin and eosin as well as masson trichrome stains were used for section staining, also small blocks of liver tissue 1 X 1/2 cm were fixed in 5% glutaraldehyde for 24h these blocks were dehydrated in ascending grades of ethanol, washed in amylacetet for two days and dried in critical point dryer by using liquid carbon dioxide. The blocks stiked in copper stamb, gold coated and examined by T 200 Jeol scanning electron microscope.

Parasitological examination:
Faecal samples were collected from the diseased cases and examined for fasciola eggs by sedimentation flotation technique.

RESULTS
Clinical examination of the diseased sheep revealed the presence of signs in the form anorexia, depression, some animals unwilling to move or even recumbent. Fever in some and shallow rapid breathing in some, others were observed.

Some sheep showed diarrhoea or constipation faecal examination indicated the presence of fasciola eggs in the most of examined faecal samples. The results of biochemical analysis were present in table (1).

Bacteriological findings were presented in separate publication after (TAMAWY, et al. 1987).

Gross pathology:
Necropsy of dead sheep revealed picture of toxaeemia in all cases. This picture was in form of severe congestion of the subcutaneous and visceral viens and petechial haemorrhage in the epicardium and endocardium. Liver in 20 cases were congested, swollen and studied with small scattered greyish white foci of necrosis. The liver of the rest diseased cases showed congestion but somewhat smaller in size than normal.

* Blomerux - France.

NECROTIC HEPATITIS IN SHEEP

Histopathological findings:

Examination of the liver obtained from twenty five dissected sheep revealed the picture of acute septicemia. The hepatic cells showed degenerative changes in the form of hydropic and fatty degeneration. A scattered focal areas of hepatic cell necrosis infiltrated by leucocytes could be observed (Fig. 1). Damage of the endothelial cells with thrombosis of blood vessels were also present. Edema of Disse's space and interlobular connective tissue was also prominent. Activation of the kupffer cells lining the sinusoides could be also observed. Moreover the organism were clearly seen by light microscope examination (Fig. 2).

Five- liver, in addition to these septicemic picture revealed chronic cholangitis with biliary cirrhosis (Fig. 3). Most of the bile ducts were showing epithelial proliferation with papillary projection into the lumen. A newly formed bile duct was prominent in relation to the main bile duct.

Surrounding the affected bile duct a prominent collagen connective tissue was also found. A scanning electron microscopy of the hepatic tissue revealed the presence of rod shaped bacilli. The organism arranged singly or in pairs attached to the long processes of the kupffer cells (Fig. 4). Also dilatation of the endothelial fenestration of the sinusoidal wall could be also observed.

DISCUSSION

Traditionally, it is known that the adult well nourished sheep are particularly susceptible to black disease. In this study the clinical and epidemiological observations confirmed the above mentioned fact and agreed closely with findings reported after JAMIESON, 1948; WILLIAMS, 1962 and BAGADI and SEWELL, 1978.

Clinical findings were supported by results of parasitological examination and finally confirmed with bacteriological findings in which cl. novyi was isolated from the collected samples (TAMAWY, et al. 1987).

Black disease in sheep commonly occurred due to cl. novyi infection and usually associated with migration of the immature worm of liver fluke (WILLIAMS, 1962 and BAGADI and SEWELL, 1978). Such aetiological circumstances were in agreement with our findings in which the cl. novyi were isolated and toxins were identified (TAMAWY, et al. 1987) in addition to detection of fasciola egg in the faecal matter collected from the diseased sheep.

Biochemical examination of blood serum also suggested the involvement of the liver during the course of the disease.

Parameters indicating liver function showed that, total serum protein of diseased sheep was markedly dropped (45.86 g/L) in contrast to the value in healthy individuals (75.30 g/L). Possible explanation of such droop could be due to massive destruction of liver cell and failure of the liver for protein synthesis. Further more serum enzyme activities indicated that there were a marked increase in the activities of serum Glutamic oxalacetic transaminases (GOT), and serum glutamic pyruvic transaminase (GPT). These findings, were also confirmed the results of liver cell destruction and agreed well with CORNELLEUS and KANEKO, 1963 and DOXEY, 1971.

Not only the clinical and microbiological results indicated the black disease but also the histopathological changes indicated, the massive hepatic cell degeneration and focal necrosis.
congestion and edema. These liver changes were diagnostic of black disease in sheep (JAMIESON, 1948; BAGADI, 1974 and BAGADI and SEWELL, 1978). Isolation as well as demonstration of the clostridial micro-organism in the tissue either by light or scanning electron microscope indicated that these lesions were induced by same organism.

The organism can be considered as normal inhabitant of this site and proliferate rapidly after death from any source (JONES and HUNT, 1983). The evidence of kupffer cell activation by having a long processes entraping the organism, dilatation of the endothelial fenstration of the sinusoidal wall and necrotic change of the hepatic cells indicated that the antemortem infection was occurred.

Biliary proliferation and cirrhosis which were observed in five cases attributed to the fasciola infestation.

From the above mentioned clinical, bacteriological laboratory and histopathological observation it could be attribute such illness inbetween sheep herd to black disease. Fascialisis considered a predisposing factor for such outbreak.

REFERENCES

Table (1)

<table>
<thead>
<tr>
<th></th>
<th>serum total protein g/L</th>
<th>GOT (AST) U/L</th>
<th>GPT A U/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparently healthy</td>
<td>X 75.30</td>
<td>55.40</td>
<td>20.12</td>
</tr>
<tr>
<td>sheep</td>
<td>S.E 4.26</td>
<td>2.81</td>
<td>2.08</td>
</tr>
<tr>
<td>N = 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diseased sheep</td>
<td>X 45.86</td>
<td>120.54</td>
<td>45.07</td>
</tr>
<tr>
<td>N = 25</td>
<td>S.E 5.43</td>
<td>1.86</td>
<td>2.62</td>
</tr>
<tr>
<td>X : Mean value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n : number of animal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.E : Standard errors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. (1): Liver showing focal area of necrosis infiltrated with leucocytes. H.E. stain (Mag 25 x 12.5)

Fig. (2): Liver showing edema and presence of the bacterial bacilli in the sinusoids. H.E. stain (Mag 2.5 x 12.5)

Fig. (3): Liver showing chronic cholangitis and biliary cirrhosis H.E. stain (Mag 2.5 x 12.5)

Fig. (4): Scanning electron photograph of hepatic sinusoids showing:
1- Presence of a red shaped bacilli.
2- Dilated fenester of the endothelium.
3- Kupffer cells having long processes.