تأثير العلاج بالسيلنيوم في الفترة الأخيرة من الحمل
على هرمونات الجونادوكروبين في الجاموس

رواف يوسف، يسوع لبيب، عبدال القادرا ذكي، ليلى بدير

أجريت التجربة على عشرة جاموسات في الولادة الأولى حتى الولادة الثالثة بحتر 100 ملجم سيلنيوم على جرعتين بفارق أسبوعين بينهم في الشهر الأخير من الحمل. أخذت عينات دم قبل وبعد الجريئة ثم على فترات متتالية بعد الولادة لتحديد مستوى الهرمون الحلق الهرموني. حفر الهرمون النابض والهرمون البرولاكتين. وتوفرت النتائج بسعة حيوانات كجموعة ضابطة بدون حقن السيلنيوم. لوحظ أن هناك تحسن ملحوظ في مستوى هذه الهرمونات بعد الولادة، تأكيداً لتأثير السيلنيوم على نشاط المبيض بعد الولادة في الجاموس المصري.

* كلية الطب البيطري - جامعة القاهرة
** معهد بحوث البحوث الزراعية بالدقي
EFFECT OF SELENIUM TREATMENT OF BUFFALOES DURING LATE PREGNANCY ON SERUM GONADOTROPHINS (With One Table)

By

R.H. YOUSSEF; Y.L. AWAD; A.A. ZAKI* and LAILA H. BEDAIR**
(Received at 15/11/1987)

SUMMARY

The buffaloes of first to third parity were injected during the last month of gestation by 150 mg sodium selenite in a rate of two doses with one week interval. Periparturient blood samples were taken to assay serum FSH, LH and prolactin levels. The levels of these hormones were significantly increased after birth when compared with the non-treated cases. It is concluded that selenium can be considered as an influential element in restoration of cyclic ovarian function after parturition in Egyptian buffaloes.

INTRODUCTION

Selenium is an essential trace element for proper functioning of various reproductive characteristics in domesticated animals. Most field cases of reduced fertility of nutritional origin may in reality be due to selenium deficiency (BLOOD, HENDERSON and RADOSTITIS, 1979; LARSON, MABRUCK and LOWRY, 1980). Field trials of selenium supplementation, indicated its important role in fertility status of cattle (SEGERSON, MURRAY, MOXON, REDMAN and CONRAD, 1977 and BLOWEY, 1982). McCLURE, EMENS and HEALY (1986) found that dairy cows in three dairy farms with mean blood glutathione peroxidase (GSH - Px) activities of \(\geq 70 \) units/g haemoglobin, showed a significant improvement in first service conception rates following treatment with oral selenium pellets. In Egyptian buffaloes, AWAD, YOUSSEF and MIKHAIL (1985) recorded favourable influences of the prepartum selenium treatment on the reproductive pattern by reducing the postpartum service period, open days and number of services per conception.

There are no previous evidences concerning the effect of selenium supplementation on endocrine parameters. The present study was planned to determine its effect on pituitary gonadotrophins in Egyptian buffaloes.

MATERIAL and METHODS

Buffaloes in a Breeding Center at Mehallit Mousa, Kafr El-Sheikh Province in which parturient animals has a previous history of nutritional muscular dystrophy of their calves, were chosen for our experiment. Ten animals of first to third calving sequence were injected during the last month of gestation by selenium as acid sodium selenite. The drug was given intramuscularly in a dose of 150 mg at a rate of two doses with one week inbetween. Blood

*; Faculty of Veterinary Medicine, Cairo University.
**; Animal Production Research Institute, Dokki, Giza.

samples were taken before and 7 days after treatment, then at birth and 10, 20, 30, 40 and 50 days after calving (0, + 10, + 30, + 40, + 50). On the other hand, seven buffaloes of the same age were left without treatment as a control and blood samples were obtained in the same manner.

Buffalo follicle stimulating hormone (FSH) and luteinizing hormone (LH) were prepared from buffalo pituitaries according to ZAKI (1986). These hormones were standardized by using the methods of STEELMAN and POHYL (1955) for FSH and SOLIMAN (1960) for LH. While, standard bovine prolactin hormone (USDA-b PRL-B-1, AFP-5300) was received from National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK- USA). The specific antisera of these hormones were prepared by the method of TADEUSZ (1971). In order to confirm the specificity of the prepared rabbit antisera, cross reaction test was done among these antisera and their specific sensitized sheep red cells. The result showed that reaction occurred only between each antiserum and its specific hormone - sensitized sheep red cells. The result showed that reaction occurred only between each antiserum and its specific hormone - sensitized sheep red cells. Sera of blood samples were assayed for FSH, LH and PRL using immunoassay methods, (Agglutination inhibition) according to WIDE (1962) and SCHUURS (1969) as described by EL-GHANDOUR (1985). The computation of hormone concentration and statistical analysis of data were carried out according to DIXON and MASSAY (1957).

RESULTS

Hormonal profile (FSH, LH and PRL) in buffaloe sera, during the last month of pregnancy up to 50 days after birth in control and treated animals are presented in Table 1 and Figure 1. Significant increase of these hormones were noticed in different periods after birth in the treated cases. FSH/LH ratio differed significantly after selenium treatment. Its pattern was clarified in Figure 1.

DISCUSSION

The results showed that in control buffaloes, the FSH levels during the last month of pregnancy until 20 days after birth were significantly higher (P< 0.01) than the levels at the subsequent period of the experiment. In accordance to our results, AHMED (1980) reported that FSH level in buffalo serum, 19 days after parturition, was higher than on days 30, 54, 66 and 75. In the present study, the dams randomly chosen for treatment had a significantly lower values of FSH level (P< 0.05) than control buffaloes. After treatment, the level increased to a higher value at day 10 postpartum with significant difference (P< 0.001) and remained slightly higher than in control animals after that.

The mean serum LH level in control animals started to increase at 10 days postpartum and reached its peak at day 20 then dropped to a lower level on day 50 after birth. The same result was reported in cattle by ZVEREVA et al. (1981) and MADEJ et al. (1984). However, in Egyptian buffaloes, ABDO (1962) and AHMED (1980) and in cattle, ERB et al. (1971) and ARIJE et al. (1974) found that LH level did not change during 75 and 60 days postpartum in buffaloes and cows respectively. Favourable results were obtained after selenium treatment in concern with LH level. Its level increased significantly when comparing with the control cases at days 10, 30 and 50.

FSH/LH ratio of the same serum samples (JANAKIRAMAN & SHETH,1978 & JANAKIRAMAN et al., 1980) has two peaks in treated cases, the first at one week after selenium injection and the second on day 40 postpartum. While, in control animals the ratio decreased significantly and sharply increased only at 50 day after birth.

The results showed that the levels of serum prolactin in control buffaloes during the period of experiment fluctuated between 0.15 to 0.21 IU/ml. The same result was obtained by AHMED (1980) who reported that the serum level of prolactin in buffaloes did not differ significantly during the first 75 days postpartum. In the case of cows, ARIJE et al. (1974) recorded that the level of this hormone fluctuated from 50 ng/ml to above 300 ng/ml during the first 20 days postpartum and then ranged between 100 to 200 ng/ml. ZVEREVA et al. (1981) detected a sharp increase of prolactin concentration in blood serum at 16-18 days after calving in Russian Black Pied cows. In selenium treated cases, the prolactin level increased significantly (P<0.05) one week after injection, then dropped at birth, to increase after 10 days and dropped at day 40 (Table 1 and Figure 1). Soliman (1964) concluded the necessity for a proper supply of prolactin to maintain proper functional activity of the ovaries in buffaloes. MADEJ et al. (1984) found a partial correlation between the log values of prolactin and LH at the intervals of 7-9, 21-23 and 49-51 days postpartum (0.2, P<0.05), similar to the results obtained in our experiment.

From the aforementioned results, the authors concluded that prepartum selenium treatment can improve the reproductive efficiency after birth in buffaloes, by its direct effect on the pituitary gland activity. This supports the previous field results recorded in buffaloes by AWAD et al. (1985) and in cows by HARRISON et al. (1981); SANDERS (1984) and MCCLURE et al. (1986).

ACKNOWLEDGEMENT

Deepest thanks are due to Prof. Dr. F.A. SOLIMAN, Professor of Physiology, Fac. Vet. Med., Cairo University for his kind help and also to Prof. Dr. SALVATOR RAITI, M.D., Director of National Hormone and Pituitary Program, NIDDK, USA, for his generous supply of bovine prolactin.

REFERENCES

Janakiraman, K. and Sheth, A.R. (1978): Serum gonadotrophins and prolactin in water buffalo in relation to its reproductive performance. (Abstr.) Fourth All-India Congress of Zoology (Endocrinology Section), held from 18 to 22 October, 1978, at Magadth University, Bodh Gaya (Bihar).

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Before</th>
<th>After</th>
<th>Before</th>
<th>After</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>1.00</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
<td>1.00</td>
<td>0.90</td>
</tr>
<tr>
<td>Test 2</td>
<td>2.00</td>
<td>1.90</td>
<td>2.00</td>
<td>1.90</td>
<td>2.00</td>
<td>1.90</td>
</tr>
<tr>
<td>Test 3</td>
<td>3.00</td>
<td>2.90</td>
<td>3.00</td>
<td>2.90</td>
<td>3.00</td>
<td>2.90</td>
</tr>
</tbody>
</table>

In parentheses:
- IH (Intraperitoneal)
- IH (IV)
- PSH (Peritoneal)
- SEED (Selenium Tissue)
- CTR (Control)

Table 1: Perturbation Hormone Profiles in Normal and After Perturbation Selenium Treatment
Figure 1: Periparturient Hormonal Profile in normal (---) and after Prepartum Selenium Treatment (-----) in Buffaloes.