قسم: المرافق الصحية على الأغذية
كلية الطب البيطري - جامعة أسوان
رئيس القسم: أحمد توفيق عبد الرحمن البسيوني

الحالة الصحية للبن الحليب بمدينة أسوان

مصطفى خليل، أحمد عبد الحميد، إمام عبد الحكيم

تم فحص 20 عينة لبن حليب جمعت من مدينة أسوان، 30 عينة من ألبان الأسواق، 30 عينة من المزارع الحكومية وذلك لتحديد الحالة الصحية لانتاجها.

 أثبتت النتائج وجود أعداد كبيرة من الميكروبات المرضية وغير المرضية مما يدل على أهمية الاتصالات الصحية أثناء انتاج وتناول هذه الألبان.

وكذلك مناقشة خطورة وجود هذه الميكروبات على الصحة العامة والاتصالات الصحية الواجب توافرها للمحافظة على صحة المستهلك.
SANITARY CONDITION OF MARKET MILK IN ASSIUT CITY
(With 3 Tables)

By
M.K. MOUSTAFA; A.A. H.AHMED and E.H. ABDEL-HAKIEM
(Received at 18/10/1987)

SUMMARY

The sanitary condition of market milk in Assiut City was denoted by microbiological investigation of 60 samples taken from different retail outlets. Standard plate and differential counts (coliforms, thermodurics, psychrotrophs, enterococci, yeasts and molds) revealed gross contamination. In addition, E.coli and anaerobes could be detected in the majority of samples. It is concluded that standards of hygiene in the production and handling of milk needs to be improved through education of both the rural and urban population.

INTRODUCTION

The quality of market milk produced in Egypt is not satisfactory from the hygienic point of view. Several types of microorganisms, including coliforms, heat resistant (thermodurics), cold resistant (psychrotrophs), enterococci, yeasts and molds gain entrance to milk through different sources and multiply rapidly when conditions become favorable for their growth. The types of organisms present in milk serve as an indicator for the hygienic measures taken during production, handling and distribution.

Considerable work has been done to estimate the number and types of organisms present in milk under different conditions of production and handling (EL-RAFEY, 1962; HARTLEY et al., 1969; RANDOLPH et al., 1973; GAHLOT et al., 1975 and AL-ASHMAWY and AL-SAMERRAY, 1981).

The present study was undertaken to assess the extent of contamination in market milk in Assiut city.

MATERIAL and METHODS

60 milk samples were collected at random from Assiut City, of which 30 from street vendors and dairy shops, and 30 from dairy farms. The samples were transferred to the laboratory without delay and subjected to the following examination:

2- Coliforms count and isolation of E.coli (MERCURI and COX, 1979).
3- Detection of anaerobes (CRUICKSHANK et al., 1969).
6- Enterococcus count (ISHENBERG et al., 1970).
7- Yeasts and Molds count (HARRIGAN and MARGARET, 1976).

RESULTS

The obtained results from the examined samples are recorded in Tables 1-3.

DISCUSSION

Table 1 revealed that the standard plate count varied between 4×10^5 and 2×10^{10}/ml with an average of 1×10^9/ml for market milk samples. Corresponding values for dairy farm milk samples were 3×10^5, 2×10^6 and 4×10^7/ml, respectively. Similar studies at Cairo University (AL-ASHMAWY and AL-SAMERRAEY, 1981) showed lower contamination of 200 bulk milk samples taken from dairy farms, the bacterial counts ranged between 1×10^4 and 8×10^7/ml with an average of 3×10^6/ml. However, the present results are in accordance with those reported by GAHLOT et al. (1975).

100% of the examined samples had coliform organisms. Their number showed an apparent correlation with the standard plate count especially for farm milk samples (Mean: 4×10^6 coliforms/ml).

Analysis for presence of E.coli revealed percentages of 70% and 66.6%, while anaerobes were present in 46.67% and 63.33% of market and farm milk samples, respectively (Table 2). The presence of these organisms in milk is an indication of faecal pollution and this explains the prevalence of diarrhoea among children, especially during summer months.

In another experiment, the mean thermotolerant counts/ml in market and farm samples were respectively, 5×10^4 and 1×10^4. It is interesting here to mention that these organisms should not be held to low numbers in any milk supply. Excessive numbers in the raw supply make it difficult to meet bacteriological standards for pasteurized milk.

Enumeration of psychrophiles in examined samples revealed that 83.33% and 90% of market and farm samples had psychrophiles in the range of 10^4-10^5 and 10^3-10^4/ml, resp. (Table 3). Previous results have shown low recovery (RANDOLPH et al., 1973 and TERADA et al., 1980). The present data showed lower numbers in farm milk samples and this may be attributed to the lack of cooling on the farms. Owing to the fact that these organisms are commonly found in water supplies, the presence of these organisms in excessive numbers indicates improper cleaning of utensils and/or adulteration with dirty water.

From results in Table 1, it is obvious that the mean values of enterococcus count/ml of market and dairy farm samples were 4×10^4 and 3×10^4, resp. LONGREE (1972) mentioned that the presence of such group in milk is considered as an index of exposure to conditions that might introduce hazardous organisms. He also stated the association of enterococci with outbreaks of food-borne gastroenteritis.

Concerning populations of yeasts and molds in examined market and farm milk samples, nearly similar results were obtained. The average values were 2×10^3 and 1×10^3/ml, respectively. From the public health point of view, many of these organisms are mycotoxin producers and often incriminated as causative agents in many infections in man and animals (STATON, 1977 and BASHIR et al., 1982).

The results achieved allow to conclude that market milk has been produced and handled under neglected hygienic measures. Therefore, appropriate measures will need to be taken.
SANITARY CONDITION OF MILK

by producers, distributors and consumers, so that all will benefit from maximum production of milk of good quality.

However, the situation is now improving through the expanded Government scheme to supply clean chlorinated water to the villages, veterinary supervision and extension service for better methods of feeding, management and milking.

REFERENCES

Table (1): Statistical analytical results of microbiological tests on examined market and farm milk samples.

<table>
<thead>
<tr>
<th>Test</th>
<th>Minimum Market</th>
<th>Maximum Market</th>
<th>Mean Market</th>
<th>Minimum Farm</th>
<th>Maximum Farm</th>
<th>Mean Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC /ml</td>
<td>4x10^5</td>
<td>2x10^10</td>
<td>1x10^9</td>
<td>3x10^5</td>
<td>2x10^8</td>
<td>4x10^7</td>
</tr>
<tr>
<td>CC /ml</td>
<td>7x10^2</td>
<td>9x10^6</td>
<td>1x10^6</td>
<td>4x10^3</td>
<td>2x10^6</td>
<td>4x10^5</td>
</tr>
<tr>
<td>TC /ml</td>
<td>1x10^3</td>
<td>3x10^5</td>
<td>5x10^4</td>
<td>4x10^2</td>
<td>5x10^4</td>
<td>1x10^4</td>
</tr>
<tr>
<td>PC /ml</td>
<td>1x10^4</td>
<td>7x10^5</td>
<td>2x10^5</td>
<td>8x10^3</td>
<td>5x10^5</td>
<td>1x10^5</td>
</tr>
<tr>
<td>EC /ml</td>
<td>5x10^2</td>
<td>3x10^5</td>
<td>4x10^4</td>
<td>7x10^1</td>
<td>2x10^5</td>
<td>3x10^4</td>
</tr>
<tr>
<td>YMC /ml</td>
<td>2x10^2</td>
<td>5x10^3</td>
<td>2x10^3</td>
<td>2x10^2</td>
<td>1x10^3</td>
<td></td>
</tr>
</tbody>
</table>

Table (2): Incidence of E.coli and anaerobes in examined milk samples.

<table>
<thead>
<tr>
<th>Source</th>
<th>No. of examined samples</th>
<th>E.coli</th>
<th>Anaerobes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>market</td>
<td>30</td>
<td>70.0</td>
<td>14</td>
</tr>
<tr>
<td>farm</td>
<td>30</td>
<td>66.6</td>
<td>19</td>
</tr>
<tr>
<td>Farm</td>
<td>Market</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table (2): The highest frequency distribution of bacterial yeast and mold counts/mL of milk samples.