MYCOLOGICAL EVALUATION OF SALTED HYDROCYNUS FORSKALII FISH IN ASSIUT GOVERNORATE

H.A. ISMAIL^{*@}; M.A. ISMAIL^{**}; H.Y. AHMED^{*} and A.K. YOUSSEF^{*} ^{*}Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Egypt ^{**}Botany Department, Faculty of Science, Assiut University, Egypt Mobile: +20 – 01019757109, Fax: +20- 882366503

Email: <u>hesham.ismail@yahoo.com</u>

Assiut University web-site: www.aun.edu.eg

ABSTRACT

Received at: 29/6/2015	The present study was performed to evaluate the mycological quality of 25 samples of commercially available salted fish (<i>Hydrocynus forskalii</i>) sold in retails outlets in
	Assiut Governorate, Egypt. Three isolation media [Dicloran Rose Bengal
Accepted: 30/7/2015	Chloramphenicol (DRBC); 10% NaCl malt extract agar and 20% NaCl malt extract
	agar] were used for counting and identification of fungi. Also, sensory quality, pH
	values and sodium chloride percentage were assessed. Sensory evaluation revealed
	that 12% of the samples were unacceptable while the remaining 88% samples were
	acceptable. Mean pH values were 7.04 ± 0.27 and 6.81 ± 0.35 for skin and muscular
	parts, respectively. Sodium chloride percentage ranged from 10.23 to 17.55% with a
	mean value of 15.03 ± 1.77 . A total of 75 species in addition to some unidentified
	species of yeasts, dematiaceous hyphomycetes and pure mycelia were isolated from
	all samples on DRBC (61 species), 10% NaCl malt extract agar (46) and 20% NaCl
	malt extract agar (19). Aspergillus, Petromyces, Penicillium, Eurotium,
	<i>Cladosporium</i> and yeasts were the most common fungi recovered on the three
	media. Some of the isolated fungi are toxigenic and have the ability to produce
	mycotoxins which have potential hazards on human health.
	• •

Key words: Fungi, Sensory, pH, Sodium chloride, Salted Fish

INTRODUCTION

Fish and fish products have traditionally been a popular part of the diet in many parts of the world, and in tropical areas including Africa and Far East where it constitutes a major part of the diet (FAO, 1981a and FAO, 1994). In poorest societies, fish, particularly as cured products, is often a significant source of high quality dietary protein, as well as being the least expensive source of animal protein available (Perisse *et al.*, 1974; Balachandran *et al.*, 1978; FAO, 1981a).

Fish constitute a part of protein in the diet of some people in Egypt. Salting is the most widespread and cheapest method for fish preservation, but the water activity of the salted fish is often not low enough to prevent mould spoilage. Fungi associated with salting fish differ according to the condition under which fish is stored (Ismail *et al.*, 1994). The salt curing may be done by unscientific methods under unhygienic conditions. As a result, the products are grossly contaminated with dirt, sand, microbes and insect

infestation and have only limited shelf life (Govindan, 1985).

Fungal contamination of fish is considered the main cause of spoilage which leads to off flavour and unpalatable taste and may constitute a public health hazard as well as severe economic losses (Karnop, 1980; Dorner, 1983; Ward and Baaj, 1988; Dimond and Kendall, 2011). Many strains of moulds isolated from different types of fish are able to produce toxic metabolites (mycotoxins) which have potential hazards on human health as they have carcinogenic effect. High mycotoxins levels could lead to liver cancer, whereas subacute levels are responsible for liver disease and organ damage (Pitt, 2000).

Since salted fish constitute an important part of the diet of great portion of consumers in Egypt and since it is subjected to many risks of contamination from various sources, therefore this study was performed to evaluate the mycological status of commercially available salted fish as well as estimation of pH value and NaCl%.

MATERIALS and METHODS

Collection of samples

Twenty five samples of salted fish (*Hydrocynus forskalii* Cuvier, 1819) were collected randomly from retail markets of different sanitation levels at Assiut city, Egypt, during the period from June 2010 to April 2011. The samples were transferred to the laboratory under aseptic condition without undue delay to be examined for their quality and fungal content.

Preparation of samples (AOAC, 1995)

The fish heads, scales, tails, fins, guts and bones were removed and discarded. The fish were filleted to obtain all flesh and skin from head to tail and from top of back to belly on both sides. Some pieces of the fillet were selected randomly and kept separately at 4° C for sensory assessment. The other parts of the fillet were thoroughly homogenized in a sterile mortar and used for mycological and chemical analyses.

Sensory evaluation (Ikeme, 1986)

Subjective evaluation of the salted fish quality was carried out by three taste panels from the Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Egypt. Quality attributes studied included appearance, juiciness, saltiness, rancidity, flavor and general acceptability. Panel members scored all factors on a 5-point hedonic scale according to Ikeme (1986).

Determination of pH

The pH value was measured using pH-meter instrument (Jenway 3505, UK) according to Lyhs *et al.* (1998).

Estimation of sodium chloride percentage

Percentage of NaCl content was measured according to AOAC (1980).

Mycological examination

Fish samples were prepared according to the technique recommended by American Public Health Association (1985). To 10 grams of muscle or skin sample, 90 ml of sterile saline solution (0.85% w/v) were added aseptically and thoroughly mixed for not more than 2.5 minutes using a sterile waring blender or homogenizer, to avoid mycelial fragment. Such homogenate represents the dilution of 10^{-1} . The homogenated sample was mixed by shaking and 10 ml of the original dilutions was transferred into sterile flask containing 90 of sterile saline solution and mixed carefully by shaking. Several dilutions were done in a sequential manner by tenfold serial dilution to obtain suitable number of colonies which could be easily counted.

Three types of media were used for the isolation and enumeration of fungi: dicloran rose-bengal chloramphenical agar medium (King et al., 1979), malt extract medium + 10% NaC1 and malt extract medium + 20% NaC1 (Blakeslee, 1915). The inoculated media were incubated at 25°C for 5-20 days during which the developing colonies were counted, identified and the total mould count/ g were calculated. The identification of mould genera and species were carried out on the basis of their macroscopic and microscopic characteristics following the identification keys of Raper and Fennell (1965); Ellis (1971); Mossel (1977); Schipper (1978); Pitt (1979); Moubasher (1993); Samson et al. (2004); Leslie and Summerell (2006); Pitt and Hocking (2009).

RESULTS

Table 1: Sensory evaluation of the examined retailed salted Hydrocynus forskalii fish samples.

	Salted fish samples							
General acceptability	No. +ve / 25	%						
Excellent	0	0						
Good	9	36						
Medium	13	52						
Bad	3	12						

		Salted fish samples										
	рН	Skin	Muso	eles								
		No. / 25	%	No. / 25	%							
	> 5.5- 6	0	0	1	4							
lge	> 6-6.5	1	4	4	16							
Range	>6.5 -7	11	44	12	48							
	> 7	13	52	8	32							
	Min.	6.50	5.99									
	Max.	7.52	7.32									
	Mean ± SE	7.04 ± 0.2	6.81 ± 0.35									

Table 2: Minimum, maximum and mean ± SE of pH values and frequency distribution of the examined retailed salted fish samples*.

* Egyptian standard (EOSQC, 2005): pH 6-6.5

Table 3: Minimum, maximum and mean ± SE of NaCl percentage and frequency distribution of the examined retailed salted fish samples*.

		Salted fish	samples					
NaC		No. / 25	%					
	> 6-9	0	0					
ß	> 9-12	2	8					
Range	> 12-15	8	32					
	>15-18	15	60					
Mir	n.	10.2	.3					
Ma	х.	17.55						
Mean	± SE	15.03 ±	1.77					

* Egyptian standard (EOSQC, 2005): NaCl % not less than 6 %.

Assiut Vet. Med. J. Vol. 61 No. 146 July 2015

 Table 4: Mean counts of fungal genera and species recovered from skin and muscle samples of retailed salted fish on DRBC, 10% NaCl malt extract agar and 20% NaCl malt extract agar at 25°C. The results are calculated as colony forming units (CFUs/g) in all samples*.

Fungal genera and						Skin												Musc	·le					
species	DRBC				MSA 10% MSA 2																			
T	TC	% TC	-	OR	TC			I OR	TC	% TC		OR	TC	% TC	-	OR								
Acremonium	1380		5	L	2	0.05		R	10	/0 10		011	220	0.82	7	M		/0 10			2	0.52	1	R
A. hyalinulum	1180		2	R			-						100	0.37	2	R							-	
A. strictum	160	0.69	2	R	2	0.05	1	R					40	0.15	2	R					2	0.52	1	R
Acremonium sp.	40	0.17	2	R									80	0.3	4	L								
Alternaria	280	1.21	7	М	18	0.47	6	L					520	1.93	10	М	12	0.62	4	L				
A. alternata	240	1.03	6	L	14	0.37	5	L					480	1.78	9	М	12	0.62	4	L				
A. chlamydospora	40	0.17	1	R	2	0.05	1	R					20	0.07	1	R								
Alternaria sp.					2	0.05	1	R																
Ascotricha sp.													20	0.07	1	R								
Aspergillus	2780	11.97	18	Н	1426	37.5	16	Н	66	23.4	5	L	2260	8.39	19	Н	324	16.72	14	Н	36	9.38	8	М
A. candidus	120	0.52	1	R					2	0.71	1	R	20	0.07	1	R	20	1.03	1	R				
A. japonicus													20	0.07	1	R								
A. niger	2420	10.42	7	Μ	270	7.1	16	L	40	14.18	1	R	1760	6.53	16	Н	188	9.7	9	Μ				
A. ochraceus	40	0.17	2	R	10	0.26	4	L	4	1.42	1	R	180	0.67	7	М	12	0.62	5	L	2	0.52	1	R
A. oryzae																	2	0.1	1	R				
A. sydowii	20	0.09	1	R	6	0.16	2	R	12	4.26	3	L	140	0.52	3	L	10	0.516	4	L	14	3.65	4	L
A. tamarii	80	0.34	1	R	40	1.05	1	R									4	0.21	1	R				
A. terreus	60	0.26	3	L	16	0.42	2	R	8	2.84	2	R	40	0.15	2	R	88	4.54	4	L	8	2.08	2	R
A. ustus													20	0.07	1	R								
A. versicolor	20	0.09	1	R	1082	28.46	5 I	Н					40	0.15	2	R					6	1.56	2	R
A. wentii					2	0.05	16	Η																
Aspergillus sp.	20	0.09	1	R									40	0.15	1	R					6	1.56	2	R
Botryotrichum	20	0.09	1	R																				
atrogriseum																								
Byssochlamys													200	0.74	3	L								
spectabilis																								
Cladosporium		14.46	16	Η	372	9.78		Η		10.64	6	L	1960	7.27	10			10.11		Η	30	7.81	7	Μ
C. cladosporioides	2660	11.45	11	Μ	328	8.63	12	Μ	30	10.64	6	L	1660	6.16	8	М	150	7.74	10	Μ	30	7.81	7	М
Fungal genera and						Skin													scle					
species		DRB	-			ASA 10				MSA				DRB	-			MSA				MSA		
				OR	TC 0/	TC N	VCI	OR	TC	% TC	NCI	OR	C TC	% TC	NC	TOF	R TC	% T($^{\rm NC}$	ITOD				ΓI OR
		% TC 1																			TC.	:% TC) NO	
C. herbarum	180	0.77	5	L	44 1	.16	5	L					40	0.15	2	R					TC	2 % 10) NO	01 010
C. sphaerospermum	180 20	0.77 0.09	5 1	L R	44 1		5 2	L R					40	0.15 0.15	2 2	R R	38	1.96	5 2	R	TC	2 % 10	.' NC	
C. sphaerospermum Cladosporium sp.	180 20 500	0.77 0.09 2.15	5 1 2	L R R	44 1 4 0	.16 .11	2	R					40 220	0.15 0.15 0.82	2 2 2	R R R	38		5 2		TC	2 % 10) N	
C. sphaerospermum Cladosporium sp. Cochliobolus	180 20 500 220	0.77 0.09 2.15 0.947	5 1 2 5	L R R L	44 1 4 0 4 0	.16 .11	2	R R					40	0.15 0.15	2 2	R R R	38	1.96	5 2	R		2 % 10		
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus	180 20 500 220	0.77 0.09 2.15	5 1 2	L R R	44 1 4 0 4 0 2 0	.16 0.11 0.11 0.05	2 2 1	R R R					40 220	0.15 0.15 0.82	2 2 2	R R R	38	1.96 0.41	5 2	R R	. 10	2 % 10		
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer	180 20 500 220 220	0.77 0.09 2.15 0.947 0.947	5 1 2 5 5	L R L L	44 1 4 0 4 0 2 0	.16 .11	2	R R					40 220 240	0.15 0.15 0.82 0.89	2 2 2 5	R R L	38 8 4	0.41	5 2 2 1	R R R				
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella	180 20 500 220 220 160	0.77 0.09 2.15 0.947 0.947 0.947	5 1 2 5 5 5	L R L L L	44 1 4 0 4 0 2 0	.16 0.11 0.11 0.05	2 2 1	R R R	2	0.71	1	R	40 220 240 160	0.15 0.15 0.82 0.89 0.59	2 2 2 5 5	R R L	38 8 4 6	0.41 0.2 0.31	5 2 2 1 2	R R R R	2	0.52	1	R
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans	180 20 500 220 220	0.77 0.09 2.15 0.947 0.947	5 1 2 5 5	L R L L	44 1 4 0 4 0 2 0	.16 0.11 0.11 0.05	2 2 1	R R R	2 2	0.71 0.71		R	40 220 240 160	0.15 0.15 0.82 0.89	2 2 2 5	R R L	38 8 4 6 2	1.96 0.41 0.2 0.31 0.1	5 2 2 1 2 1	R R R R R			1	R
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor	180 20 500 220 220 160	0.77 0.09 2.15 0.947 0.947 0.947	5 1 2 5 5 5	L R L L L	44 1 4 0 4 0 2 0	.16 0.11 0.11 0.05	2 2 1	R R R			1		40 220 240 160 100	0.15 0.15 0.82 0.89 0.59 0.37	2 2 2 5 5 4	R R L L	38 8 4 6 2 2	1.96 0.41 0.2 0.31 0.1	5 2 2 1 2 1 1	R R R R R R	2	0.52	1	R
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp.	180 20 500 220 220 160 160	0.77 0.09 2.15 0.947 0.947 0.69 0.69	5 1 2 5 5 5 5	L R L L L L	44 1 4 0 4 0 2 0 2 0	.16 0.11 0.11 0.05 0.05	2 2 1 1	R R R	2	0.71	1	R	40 220 240 160 100 60	0.15 0.15 0.82 0.89 0.59	2 2 2 5 5	R R L	38 8 4 6 2 2 2 2	1.96 0.41 0.2 0.31 0.1 0.1	5 2 2 1 1 1 1 1	R R R R R R R	2 2	0.52 0.52	1 1	R
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium	180 20 500 220 220 160	0.77 0.09 2.15 0.947 0.947 0.947	5 1 2 5 5 5	L R L L L	44 1 4 0 4 0 2 0 2 0 4 0	.16 .11 .11 .05 .05	2 2 1 1 1	R R R H			1		40 220 240 160 100 60	0.15 0.15 0.82 0.89 0.59 0.37	2 2 2 5 5 4	R R L L	38 8 4 6 2 2 2 368	1.96 0.41 0.2 0.31 0.1 0.1 0.1 8 18.99	5 2 1 2 1 1 1 9 13	R R R R R R R R	2 2	0.52	1 1	R
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami	180 20 500 220 220 220 160 160 160	0.77 0.09 2.15 0.947 0.947 0.69 0.69 1.55	5 1 2 5 5 5 5 3	L R L L L L	44 1 4 0 4 0 2 0 2 0 4 1 4 1 4 1 4 0 2 0 4 1	.16 .11 .05 .05 .05	2 1 1 1 14 4	R R R H L	2 28	0.71 9.93	1 1 7	R M	40 220 240 160 100 60	0.15 0.15 0.82 0.89 0.59 0.37	2 2 2 5 5 4	R R L L	38 8 4 6 2 2 2 368 140	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 3 18.99 0 7.22	1 2 1 2 1 1 1 1 9 13 2 3	R R R R R R R L	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri	180 20 500 220 220 160 160	0.77 0.09 2.15 0.947 0.947 0.69 0.69	5 1 2 5 5 5 5	L R L L L L	44 1 4 0 4 0 2 0 2 0 4 1 4 1 4 1 4 0 2 0 4 1	.16 .11 .05 .05 .05	2 2 1 1 1	R R R H	2 28	0.71	1	R	40 220 240 160 100 60	0.15 0.15 0.82 0.89 0.59 0.37	2 2 2 5 5 4	R R L L	38 8 4 6 2 2 2 2 368 140 186	1.96 0.41 0.2 0.31 0.1 0.1 0.1 3 18.99) 7.22 5 9.6	$ \begin{array}{c} 5 & 2 \\ 2 \\ 1 \\ $	R R R R R R R H L	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens	180 20 500 220 220 160 160 360 20	0.77 0.09 2.15 0.947 0.947 0.69 0.69 1.55 0.09	5 1 2 5 5 5 5 3	L R L L L L R	44 1 4 0 2 0 2 0 4 0 4 0 2 0 4 0 4 0 2 0 4 0 4 0 2 0 4 0 4 0 4 0 2 0 4 0	.16 .11 .05 .05 .05 	2 1 1 14 4 10	R R R H L M	2 28	0.71 9.93	1 1 7	R M	40 220 240 160 100 60	0.15 0.15 0.82 0.89 0.59 0.37	2 2 2 5 5 4	R R L L	38 8 4 6 2 2 2 2 368 140 186	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 3 18.99 0 7.22	$ \begin{array}{c} 5 & 2 \\ 2 \\ 1 \\ $	R R R R R R R L	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum	180 20 500 220 220 220 160 160 160 360 20 20	0.77 0.09 2.15 0.947 0.947 0.69 0.69 1.55 0.09	5 1 2 5 5 5 5 3 1 1	L R L L L L R R	44 1 4 0 2 0 2 0 426 1 112 2 206 5 6 0	.16 .11 .05 .05 .05 	2 1 1 1 1 1 4 4 10 3	R R R H L L	2 28 26	0.71 9.93 9.22	1 1 7 7	R M M	40 220 240 160 100 60	0.15 0.15 0.82 0.89 0.59 0.37 0.22	2 2 2 5 5 4	R R L L L R	388 8 4 6 2 2 2 2 368 140 186 20	1.96 0.41 0.2 0.31 0.1 0.1 0.1 3 18.99 0 7.22 5 9.6 1.032	5 2 1 2 1 1 9 133 11 1 2 3 11 1	R R R R R R R R C H L L M R	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp.	180 20 500 220 220 160 160 360 20	0.77 0.09 2.15 0.947 0.947 0.69 0.69 1.55 0.09	5 1 2 5 5 5 5 3	L R L L L L R	44 1 4 0 2 0 2 0 2 0 4 0 2 0 4 0 2 0 2 0 4 0 4 0 2 0 4 0 2 0 4 0 4 0 2 0 5 0 6 0 102 2	.16 .11 .0.05 .0.05 .0.05 	2 1 1 1 1 4 4 10 3 2	R R R R H L R	2 28	0.71 9.93	1 1 7	R M	40 220 240 160 100 60	0.15 0.15 0.82 0.89 0.59 0.37	2 2 2 5 5 4	R R L L	388 8 4 6 2 2 2 2 368 140 186 20	1.96 0.41 0.2 0.31 0.1 0.1 0.1 3 18.99 0 7.22 5 9.6 1.032	5 2 1 2 1 1 9 133 11 1 2 3 11 1	R R R R R R R R C H L L M R	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes	180 20 500 220 220 160 160 160 360 20 20 320	0.77 0.09 2.15 0.947 0.947 0.69 0.69 1.55 0.09 0.09 1.38	5 1 2 5 5 5 5 5 3 1 1 1	L R L L L R R R R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .0.05 .0.05 .0.05 .1.2 	2 2 1 1 1 1 4 4 10 3 2 1	R R R R H L M L R R	2 28 26	0.71 9.93 9.22	1 1 7 7	R M M	40 220 240 160 100 60 60	0.15 0.15 0.82 0.89 0.59 0.37 0.22	2 2 2 5 5 4 1	R R L L L R R	388 8 4 6 2 2 2 2 3685 3685 140 186 200 222	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	5 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 1 2	R R R R R R R L L M R R	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes Fusarium	180 20 500 220 220 220 160 160 160 360 20 20	0.77 0.09 2.15 0.947 0.947 0.69 0.69 1.55 0.09	5 1 2 5 5 5 5 3 1 1	L R L L L L R R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .0.05 .0.05 .0.05 	2 1 1 1 1 4 4 10 3 2	R R R R H L R	2 28 26	0.71 9.93 9.22	1 1 7 7	R M M	40 220 240 160 100 60 60 720	0.15 0.15 0.82 0.89 0.59 0.37 0.22 0.22 2.67	2 2 2 5 5 4 1 1 1 8	R R L L L R R R R R	388 8 4 6 2 2 2 2 2 368 140 186 200 222 220 10	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	5 2 1 2 1 1 1 1 2 3 111 1 1 2 <td< td=""><td>R R R R R R R G H L M R R R L</td><td>2 2 17(</td><td>0.52 0.52</td><td>1 1 7 1</td><td>R R 1 M</td></td<>	R R R R R R R G H L M R R R L	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes Fusarium F. acuminatum	180 20 500 220 160 160 360 20 20 320 740	0.77 0.09 2.15 0.947 0.947 0.69 0.69 1.55 0.09 1.38 3.19	5 1 2 5 5 5 5 5 3 1 1 1 7	L R L L L R R R M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .0.05 .0.05 .0.05 .1.2 	2 2 1 1 1 1 4 4 10 3 2 1	R R R R H L M L R R	2 28 26	0.71 9.93 9.22	1 1 7 7	R M M	40 220 240 160 100 60 60	0.15 0.15 0.82 0.89 0.59 0.37 0.22	2 2 2 5 5 4 1	R R L L L R R R R	388 8 4 6 2 2 2 2 2 368 140 186 200 222 220 10	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	5 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 1 2	R R R R R R R L L M R R	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes Fusarium F. acuminatum F. oxysporum	180 20 500 220 220 160 160 160 360 20 20 320 740 40	0.77 0.09 2.15 0.947 0.947 0.69 0.69 0.69 1.55 0.09 0.09 1.38 3.19 0.17	5 1 2 5 5 5 5 3 1 1 1 1 7	L R L L L L R R R R R R R R R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .05 .05 .05 .12 .95 .42 .16 .68 .05 .01	2 2 1 1 1 1 1 1 3 2 1 2	R R R R H L M L R R R R	2 28 26	0.71 9.93 9.22	1 1 7 7	R M M	40 220 240 160 100 60 60 720 20	0.15 0.15 0.82 0.89 0.59 0.37 0.22 0.22 2.67 0.07	2 2 2 5 5 4 1 1 8 8 1	R R L L L R R R R R	388 8 4 6 2 2 2 3685 368 368 20 20 20 20 20 20 20 20 20 20 20 20 20	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 0.1 3 18.99 0 7.22 5 9.66 1.033 1.14 0.52 0.1	5 2 1 2 1 1 9 133 11 1 9 132 11 1 12 1 1 1 12 1 12 1 12 1 12 1 12 1	R R R R R R B H L M R R R R R R R R R R R R R R R R R R	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes Fusarium F. acuminatum F. oxysporum F. semitectum	180 20 500 220 220 160 160 160 360 20 20 320 740 40	0.77 0.09 2.15 0.947 0.947 0.69 0.69 1.55 0.09 1.38 3.19	5 1 2 5 5 5 5 5 3 1 1 1 7	L R L L L R R R M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .0.05 .0.05 .0.05 .1.2 	2 2 1 1 1 1 4 4 10 3 2 1	R R R R H L M L R R	2 28 26	0.71 9.93 9.22	1 1 7 7	R M M	40 220 240 160 100 60 60 720 20 360	0.15 0.15 0.82 0.89 0.59 0.37 0.22 0.22 2.67 0.07 1.34	2 2 2 5 5 4 1 1 1 8 8 1 1 4	R R L L L R R R R R L	388 8 4 6 2 2 2 2 368 368 368 140 186 200 222 222 100 2 2	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	5 2 1 2 1 1 1 1 2 3 111 1 1 2 <td< td=""><td>R R R R R R B H L M R R R R R R R R R R R R R R R R R R</td><td>2 2 17(</td><td>0.52 0.52</td><td>1 1 7 1</td><td>R R 1 M</td></td<>	R R R R R R B H L M R R R R R R R R R R R R R R R R R R	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes Fusarium F. acuminatum F. sysporum F. senitectum F. solani	180 20 500 220 220 160 160 360 20 20 320 740 40 180	0.77 0.09 2.15 0.947 0.947 0.69 0.69 0.69 1.55 0.09 0.09 1.38 3.19 0.17 0.77	5 1 2 5 5 5 5 5 3 1 1 1 1 1 4	L R L L L L R R R R R R R L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .05 .05 .05 .12 .95 .42 .16 .68 .05 .01	2 2 1 1 1 1 1 1 3 2 1 2	R R R R H L M L R R R R	2 28 26	0.71 9.93 9.22	1 1 7 7	R M M	40 220 240 160 100 60 60 720 20	0.15 0.15 0.82 0.89 0.59 0.37 0.22 0.22 2.67 0.07	2 2 2 5 5 4 1 1 1 8 8 1 1 4	R R L L L R R R R R	388 8 4 6 2 2 2 2 368 368 368 140 186 200 222 222 100 2 2	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 0.1 3 18.99 0 7.22 5 9.66 1.033 1.14 0.52 0.1	5 2 1 2 1 1 9 133 11 1 9 132 11 1 12 1 1 1 12 1 12 1 12 1 12 1 12 1	R R R R R R B H L M R R R R R R R R R R R R R R R R R R	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes Fusarium F. acuminatum F. acuminatum F. soysporum F. senitectum F. solani F. verticillioides	180 20 500 220 220 160 160 360 20 20 320 740 40 180 60	0.77 0.09 2.15 0.947 0.947 0.69 0.69 0.69 1.55 0.09 0.09 1.38 3.19 0.17 0.77	5 1 2 5 5 5 5 5 1 1 1 1 1 4 2	L R L L L L R R R R R R R R L R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .05 .05 .05 .12 .95 .42 .16 .68 .05 .01	2 2 1 1 1 1 1 1 3 2 1 2	R R R R H L M L R R R R	2 28 26	0.71 9.93 9.22	1 1 7 7	R M M	40 220 240 160 100 60 60 720 20 360 20	0.15 0.15 0.82 0.89 0.59 0.37 0.22 0.22 2.67 0.07 1.34 0.07	2 2 2 5 5 4 1 1 8 8 1 1 4 4 1	R R L L L R R R R R R R	388 8 4 6 2 2 2 2 2 3 68 140 186 200 222 220 100 2 2 2	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 3 18.99 0 7.22 5 9.6 1.033 1.14 0.52 0.1	5 2 2 1 2 1 1 1 1 1 2 1 2 1 1 2 1 2 1 2 1	R R R R H L M R R R R R R R	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes Fusarium F. acuminatum F. acuminatum F. soslani F. solani F. verticillioides Fusarium sp.	180 20 500 220 220 160 160 360 20 20 320 740 40 180 60	0.77 0.09 2.15 0.947 0.947 0.69 0.69 0.69 1.55 0.09 0.09 1.38 3.19 0.17 0.77	5 1 2 5 5 5 5 5 3 1 1 1 1 1 4	L R L L L L R R R R R R R L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .05 .05 .05 .12 .95 .42 .16 .68 .05 .01	2 2 1 1 1 1 1 1 3 2 1 2	R R R R H L M L R R R R	2 28 26	0.71 9.93 9.22	1 1 7 7	R M M	40 220 240 160 100 60 60 720 20 360 20 320	0.15 0.15 0.82 0.89 0.59 0.37 0.22 0.22 2.67 0.07 1.34 0.07 1.19	2 2 2 5 5 4 1 1 8 8 1 1 4 4 4 4	R R L L L R R R R R L L	38 8 4 6 2 2 2 2 2 368 140 186 20 22 20 22 20 22 2 2 6	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 0.1 1.0.1 1.0.1 1.0.1 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.3 1.0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	5 2 2 1 2 1 1 1 1 1 2 1 2 1 1 2 1 2 1 2 1	R R R R H L M R R R R R R R	2 2 17(0.52 0.52	1 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes Fusarium F. acuminatum F. acuminatum F. soslani F. solani F. verticillioides Fusarium sp. Graphium sp.	180 20 500 220 220 160 160 360 20 20 320 740 40 180 60 460	0.77 0.09 2.15 0.947 0.947 0.69 0.69 0.69 1.55 0.09 0.09 1.38 3.19 0.17 0.77 0.26 1.98		L R L L L R R R R R R R R R R R R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	2 2 1 1 1 1 1 1 1 1 1 2 2 2	R R R R H L M R R R R R	2 28 26 2	0.71 9.93 9.22 0.71	1 1 7 7 1	R M M	40 220 240 160 100 60 60 720 20 360 20	0.15 0.15 0.82 0.89 0.59 0.37 0.22 0.22 2.67 0.07 1.34 0.07	2 2 2 5 5 4 1 1 8 8 1 1 4 4 1	R R L L L R R R R R R L L	38 8 4 6 2 2 2 2 2 2 2 2 2 2 2 2 2	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 1.03 1.14 0.52 0.1 0.52 0.1	5 2 1 2 1 1 1 1 1 1 2 3 111 2 2 1 4 2 2 4 1 1 1 1 2 2 2 2 2 2 2 2	R R R R R K R R R R R R R R R R	2 2 170 170	0.52	1 1 7 1 7 1	R R 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes Fusarium F. acuminatum F. acuminatum F. soslani F. solani F. verticillioides Fusarium sp.	180 20 500 220 220 160 360 20 20 320 740 40 180 60 460 40	0.77 0.09 2.15 0.947 0.947 0.69 0.69 0.69 0.09 1.55 0.09 0.09 1.38 3.19 0.17 0.77 0.26 1.98 0.17	5 1 2 5 5 5 5 5 1 1 1 1 1 4 2	L R L L L L R R R R R R R R L R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	2 2 1 1 1 1 1 1 3 2 1 2	R R R R H L M R R R R R	2 28 26 2	0.71 9.93 9.22	1 1 7 7	R M M	40 220 240 160 100 60 60 720 20 360 20 320	0.15 0.15 0.82 0.89 0.59 0.37 0.22 0.22 2.67 0.07 1.34 0.07 1.19 0.07	2 2 5 5 4 1 1 1 8 8 1 1 4 1 1 4 1	R R L L R R R R R R R R R R R R R R R	38 8 4 6 2 2 2 368 140 186 20 22 22 20 10 2 2 6 6 2	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 1.03 1.03 1.14 0.52 0.1 0.1 0.31 0.31	5 2 1 2 1 1 9 133 11 1 2 1 4 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1	R R R R R R R R R R R R R R R R R R R	2 2 170 170	0.52 0.52) 44.2	1 1 7 1 7 1	R R 1 M 1 M
C. sphaerospermum Cladosporium sp. Cochliobolus C. lunatus C. specifer Emericella E. nidulans E. variecolor Emericella sp. Eurotium E. amstelodami E. chevalieri E. repens E. rubrum Eurotium sp. Fennellia flavipes Fusarium F. acuminatum F. acuminatum F. soysporum F. semitectum F. solani F. verticillioides Fusarium sp. Graphium sp.	180 20 500 220 220 160 360 20 20 320 740 40 180 60 460 40	0.77 0.09 2.15 0.947 0.947 0.69 0.69 0.69 1.55 0.09 0.09 1.38 3.19 0.17 0.77 0.26 1.98		L R L L L R R R R R R R R R R R R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16 .11 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	2 2 1 1 1 1 1 1 1 1 1 2 2 2	R R R R H L M R R R R R	2 28 26 2	0.71 9.93 9.22 0.71	1 1 7 7 1	R M M	40 220 240 160 100 60 60 720 20 360 20 320	0.15 0.15 0.82 0.89 0.59 0.37 0.22 0.22 2.67 0.07 1.34 0.07 1.19	2 2 5 5 4 1 1 1 8 8 1 1 4 1 1 4 1	R R L L R R R R R R R R R R R R R R R	38 8 4 6 2 2 2 368 140 186 20 22 22 20 10 2 2 6 6 2	1.96 0.41 0.2 0.31 0.1 0.1 0.1 0.1 1.03 1.14 0.52 0.1 0.52 0.1	5 2 1 2 1 1 9 133 11 1 2 1 4 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1	R R R R R R R R R R R R R R R R R R R	2 2 170 170	0.52	1 1 7 1 7 1	R R 1 M

Fungal genera and						Skin												Musc	le					
species		DRB	С			MSA	10%			MSA	20%			DRB	С			MSA	10%)		MSA	20%	
	TC	% TC	NC	I OR	TC	% TC	NCI	OR	TC	% TC	NCI	OR	TC	% TC	NCI	OR	TC	% TC	NC	I OR	TC	% TC	NCI	OF
Penicillium	1900	8.18	15	Н	76	1.3	10	М	42	14.89	7	Μ	1000	3.71	16	Η	112	5.78	7	М	96	25	4	L
P. aurantiogriseum	20	0.09	1	R	20	0.53	1	R	12	4.26	2	R	60	0.22	2	R								
P. chrysogenum	120	0.52	3	L	2	0.05	1	R					220	0.82	5	L								
P. citrinum	20	0.09	1	R																				
P. corylophilum									8	2.84	2	R									2	0.52	1	R
P. duclauxii	60	0.26	2	R									60	0.22	2	R								
P. expansum	20	0.09	1	R																				
P. oxalicum	1420	6.11	6	L	32	0.84	5	L					300	1.11	5	L	94	4.85	2	R				
P. pinophilum	40	0.17	2	R									20	0.07	1	R								
P. purpurogenum													20	0.07	1	R								
Penicillium sp.	200	0.86	5	L	22	0.58	3	L	22	7.8	3	L	320	1.19	7	М	18	0.93	7	М	94	24.48	3	L
Petromyces flavus	6280	27.03	17	Н	588	15.47	11	М	52	18.44	4	L	3500	12.99	17	Н	676	34.88	12	М	10	2.6	2	R
Phoma epicoccina	60	0.26	1	R																				
Pseudoallescheria boydii													20	0.07	1	R								
Rhizopus	40	0.17	1	R	20	0.53	1	R									4	0.21	1	R				
R. oryzae	40	0.17	1	R																				
R. stolonifer					20	0.53	1	R									4	0.21	1	R				
Scolecobasidium variabilis					2	0.05	1	R																
Scopulariopsis	60	0.26	3	L									80	0.3	4	L								
S. brevicaulis	20	0.09	1	R																				
S. brumptii													40	0.15	2	R								
S. halophilica					2	0.05	1	R	20	7.09	1	R									22	5.73	2	R
S. japonicus	40	0.17	2	R									20	0.07	1	R								
Scopulariopsis sp.													20	0.07	1	R								
Setosphaeria rostrata	40	0.17	2	R	4	0.1	2	R					40	0.15	2	R								
Sporothrix schenkii																	2	0.1	1	R				
Stachybotrys	220	0.95	4	L	2	0.1	1	R					20	0.07	1	R								
Fungal genera and						Skin												Musc	le					
species		DRBC	2]	MSA 1				MSA	20%			DRBC	2			MSA				MSA	20%	
-	TC 9	% TC N		OR				I OR	TC				TC			OR				IOR	R TC	% TC		0
			Ι																					
S. chartarum				L	2	0.1	1	R								_								
Stachbotrys sp.				R	20	0.50	1						20	0.07	1	R								
Stemphylium botryosum Syncephalastrum racemosum	60	0.26	2	R	20 10	0.53 0.26	1	R R					170	0.63	1	R	4	0.21	1	R				
Trichothecium roseum													40	0.15	2	R								
Ulocladium sp.	60	0.26	3	L										0110	-									
Wallemia sebi			-						2	0.71	1	R												
Unidentified mycelia (dark &white)	80	0.34	4	L	4	0.11	2	R					100	0.37	3	L	26	1.34	2	R				
Yeasts	5070	21.83	17	Η	804	21.15	9	Μ	8	2.87	2	R	15620	57.96	11	М	186	9.6	5	L	4	1.04	2	R
Black														0.07		R								
Orange- red				L	18	0.47	3	L	2	0.71	1	R		15.44		L	2	0.1	1	R		0.52		F
White Total (fungi and yeasts)	2323	21.31 100	14		784 3802	20.62 100	8	М		2.13	2	R	11440 26950		10	М	184 1938	9.49		L	2 384	0.52 4 100	1	F
N 0 20	0					40				~				• •					_			~		
No. of genera: 30		20				18				9				20				15				9		
No. of species: 75		47				35				16)			46				31	L			14	ŀ	

*TC: Total counts, %TC: Percentage total count (calculated per total counts of all fungi), NCI: number of cases of isolation, OR: Occurrence remarks; H = high (13-25), M = moderate (7-12), L = low (3-6), R = rare (1-2).

DISCUSSION

The results of sensory evaluation (Table 1) indicated that most salted fish samples (88%) were organoleptically accepted where 9 (36%) and 13 (52%) out of 25 samples were categorized as of good and medium quality, respectively. Only 3 (12%) samples were of bad quality. Our results are nearly similar to those obtained by Ahmed (1976), Essa (1998) and Sayed (2008) who revealed that most salted fish samples they examined were physically normal. On the other hand different results were obtained by El-Morshdy *et al.* (1981) and Nayel (2007) who detected higher percentages of bad quality salted fish.

It is evident from the results recorded in Table (2) that the pH values of the samples varied from 6.5 to 7.52 with a mean value of 7.04 ± 0.27 on skin part of fish, whereas, on muscle part they varied from 5.99 to 7.32 with a mean value of 6.81 ± 0.35 . Out of 25 samples of skin part of fish 11 and 13 were in the pH range of >6.5-7.0 and >7, respectively. Only one sample achieved pH value of 6.5. On muscular part of fish 4, 12 and 8 of the examined samples were in the pH range of >6-6.5, >6.5-7.0 and >7, respectively. However, only one sample achieved more acidic pH value of 5.99.

From the summarized results in Table (2) it can be concluded that 96%, and 80% of the examined samples of skin and muscular parts had pH values exceeded those of the Egyptian standards for salted fish (pH 6.0- 6.5) (EOSQC, 2005), only 4% and 20% of samples, respectively, had values complying with the Egyptian standards. The pH values of the analyzed samples slightly differed from those previously obtained by Ahmed (1976), Abd El-Rahman et al. (1988) and EI-Sheshnagui (2006). However, they were generally higher than those reported by NRCT (1981-1982), Sakai et al. (1983), Chang et al. (1991), Yatsunami and Echigo (1991), Silla-Santos (1996), Hernandez-Herrero et al. (1999a,b), Majumdar et al. (2006), Yung-Hsiang et al. (2006), Sayed (2008) for a variety of salted fish products. On the other hand, the obtained values were lower than those recorded by Steinkraus (1983), Surono and Hosono (1994) and Anihouvi et al. (2006).

For sodium chloride contents, the percentages were varied from 10.23 - 17.55 % with a mean value of 15.03 ± 1.77 . Out of the 25 examined salted fish samples 2, 8 and 15 had NaCl in the range of >9 - 12%, >12-15% and >15-18%, respectively (Table 3). From these results, it is evident that all examined samples had NaCl content more than 6 % which comply with the established Egyptian standards (EOSQC, 2005) for salted fish. Our results were nearly similar to those recorded by NRCT (1981-

1982) for pla-ra, Abd El-Rahman et al. (1988) for meloha, and Majumdar *et al.* (2006) for lona ilish. On the other hand they were slightly different from those registered by Shahine (1956), Ahmed (1976), Jennie and Muchtadi (1978), El-Morshdy *et al.* (1981), Chang *et al.* (1991), Surono and Hosono (1994), Essa (1998) and Sayed (2008). Lower values were reported by Sakai *et al.* (1983), Anihouvi *et al.* (2006) and El-Sheshnagui (2006), while Steinkraus (1983), Sanni *et al.* (2002) and Yung-Hsiang *et al.* (2006) detected higher percentage.

It was observed that the fungal propagules recovered on DRBC were higher than those recovered on malt extract agar amended with either 10% or 20% NaCl with the lowest count being recorded on 20% NaCl malt extract agar (Table 4). This may be attributed to the effect of high concentration of salt which inhibits the growth of many species of fungi as reported by Atapattu and Samarajeewa (1990), Ismail et al. (1994), Essa (1998) and Ahmed et al. (2005). Addition of sodium chloride at high rate to the medium gives the opportunity to halophilic moulds (which probably found in salted fish samples) to appear in such media. The low mould counts recorded on 20% NaC1 malt extract agar is in agreement with those obtained by Abdel-Rahman et al. (1988). However, higher mould counts were recorded by Ismail et al. (1994). This variation in mould counts in salted fish samples may be due to different levels of measures adopted during handling, sanitary manufacturing and storage.

It is noteworthy that many fungi were isolated on the three media and these were Acremonium strictum, Aspergillus niger, A. ochraceus, A. sydowii, A. terreus, A. versicolor, Cladosporium cladosporioides, Emericella nidulans, Eurotium chevalieri, Eurotium sp., Neosartorya fumigata, Penicillium chrysogenum, Petromyces flavus, Scopulariopsis sp. and orange-red and white yeasts.

On the other hand, some were recorded only on one medium such as Acremonium hyalinulum, Aspergillus Acremonium sp., Ascotricha sp., japanicus, A. ustus, Botryotrichum atrogriseum, Byssochlamys spectabilis, Setosphaeria rostrata, Fusarium oxysporum, F. solani, F. verticillioides, Graphium sp., Penicillium citrinum, P. duclauxii, P. expansum, P. pinophilum, P. purpurogenum, Phoma epicoccina, Pseudoallescheria boydii, Rhizopus oryzae, Scopulariopsis brevicaulis, S. brumptii, S. japonicum, Setosphaeria rostrata, Stachybotrys chartarum, Trichothecium roseum Ulocladium sp. and black yeasts on only DRBC; Alternaria sp., Aspergillus oryzae, A. wentii, Cochliobolus specifer, Emericella variecolor, Eurotium repens, Fennellia flavipes, Rhizopus stolonifer, Scolecobasidium variabile, and Sporothrix schenkii on 10% NaCl MSA medium only; and Penicillium corylophilium

and Wallemia sebi on 20% NaCl MSA medium only (Table 4). Many of these fungi were isolated from salted fish in Egypt as reported by (Abdel-Rahman *et al.*, 1988, Ismail *et al.*, 1994, Essa 1998, Youssef *et al.*, 2003 and Ahmed *et al.*, 2005). Also, in other countries such as Sri Lank (Atapattu and Samarajeewa 1990 and Wheeler and Hocking 1993), Japan (Hitokoto *et al.*, 1976), Indonesia (Wheeler *et al.*, 1986) and in Ghana (Lu *et al.*, 1988).

It is noteworthy also that many fungi were isolated from only skin parts and these were Alternaria sp., Botryotrichum atrogriseum, Fusarium oxysporum, F. verticillioides, Penicillium citrinum, P. expansum, epicoccina. Rhizopus Phoma orvzae. Scolecobasidium variabile, *Scopulariopsis* brevicaulis, Setosphaeria rostrata, Stachybotrys chartarum, Stemphylium botryosum, Ulocladium sp. and Wallemia sebi. On the other hand, others were isolated only from muscular parts such as Ascotricha sp., Byssochlamys spectabilis, Emericella sp., Fusarium acuminatum, F. solani, Graphium sp., Penicillium purpurogenum, Pseudoallescheria boydii, Scopulariopsis brumptii, *Scopulariopsis* sp., Sporothrix schenkii, Trichothecium roseum, and black yeasts.

It was observed that *Eurotium* was isolated in high frequency from 14 skin and 13 muscular samples out of 25 samples examined on 10% NaCl malt extract agar as this genus is considered as halophilic fungus. *Eurotium* amounted 11.2% and 18.99% of the total fungal propagules on skin and muscular parts, respectively. *E. chevalieri* and *E. amstelodami* were the most prevalent species.

Cladosporium was frequently isolated on DRBC from 16 samples yielding 14.46% of the total propagules on skin part and from 10 samples yielding 7.72% of the propagules on muscular part. While on 10% NaCl malt agar this genus was recovered in high frequency from 13 samples from both skin and muscular parts, accounting for 9.78% and 10.11% of the total propagules, respectively. *C. cladosporioides* and *C. herbarum* were the most prevalent species.

Both *Aspergillus* and *Penicillium* species were recovered in relatively high counts on dicloran rosebengal agar, in percentages of 11.97% and 8.18% of skin and 8.39% & 3.71% of muscular parts of the total propagules, respectively. Both species were isolated on 10% salt malt extract agar, in percentages of 37.5% and 1.3 of skin and 16.72% and 5.78% of muscular parts of the total propagules, respectively. On 20% salt malt extract media they were recovered in percentages of 23.40% and 14.89% of skin and 9.38% and 25% of muscular parts of the total propagules, respectively. The total counts of genus *Aspergillus* and *Penicillium* were sharply decreased on 20% NaC1 malt extract medium as affected by the

Assiut Vet. Med. J. Vol. 61 No. 146 July 2015

presence of sodium chloride (Table 4). In Egypt, Youssef et al. (2003) isolated both Aspergillus and Penicillium species in percentages of 72.9%, 3.8%, respectively; Essa (1998) isolated both Aspergillus and Penicillium species in percentage of 93.46% and 0.42% of the total propagules, respectively. Aspergillus (53.3%) and Penicillium (44.4%) species were also isolated by Ismail et al. (1994) from salted fish samples. Also, Abdel-Rahman et al. (1988) could isolate both Aspergillus and Penicillium species which accounted for 26.3% and 38.5% of the total propagules from salted fish samples, respectively. Several authors such as Watson (1993), McMahon (1994) and Hassan (1995) reported the importance of Aspergillus and Penicillium species in production of mycotoxins which have toxic and carcinogenic effects on public health.

Petromyces flavus (the aflatoxigenic Aspergillus species) followed by yeasts, Aspergillus, Cladosporium, Penicillium and Fusarium predominated on skin parts, while on muscular parts yeasts predominated over Petromyces flavus, Aspergillus, Cladosporium, Penicillium, Fusarium in the number of propagules.

From the current results, it could conclude that some of the examined salted fish are highly contaminated with moulds due to neglected sanitary measures. Furthermore, mishandling of such types of fish resulted in presence of a variety of fungi in high counts.

The incidence of moulds could be attributed to improper sanitation during catching, handling, processing, salting storage, transportation, distribution and marketing of fish (Novotny *et al.*, 2004). Contaminations with a variety of mould species resulted in undesirable changes of fish and rendering it unfit for marketing and increase the risk of infection with respective disease to consumers as a probable result of aflatoxins production by some fungal strains (Ward and Baaj, 1988; Dimond and Kendall, 2011).

REFERENCES

- Abd El-Rahman, H.; El-Khateib, T. and Refai, R.S. (1988): Microbiological studies on the Egyptian salted fish "Moloha". Assiut Vet. Med. J., 19 (38): 90-97.
- Adams, M.R.; Cooke, R.D. and Rattagool, Pongpen (1985): Fermented fish products of South East Asia. Trop. Sci., 25: 61-73.
- Ahmed, A.M.; Ismail, S.A. and Abd-El- Rahman, H.A. (2005): Quantitative, qualitative and toxigenic evaluations of xerophilic mould in traditional Egyptian salted fish (Molouha). J. of food safety, 25, 9: 18.
- Ahmed, H.Y. (1976): Studies on the sanitary

improvements of locally manufactured salted Fish. Ph. D. Thesis (Meat Hygiene), Fac. of Vet. Medicine, Assiut University.

- AOAC "Association of Official Analytical Chemists" (1980): official methods of analysis of the Association of Official Analytical Chemists. 13th Ed. Horwitz, W. (edit.). Washington D.C., AOAC.
- AOAC (1995): Official Methods of Analysis of AOAC International. 16th Ed., Volume II: Food Composition; Additives; Natural Contaminants. Cunniff, Patricia. (edit.) AOAC International, Virginia, USA.
- APHA (American Public Health Association) (1985): Compendium of methods for the microbiological examination of foods. The American Public Health Association, Speck, M.L., (ed.) 2nd Ed Washington, D.C.
- Anihouvi, V.B.; Ayernor, G.S.; Hounhouigan, J.D. and Sakyi-Dawso, E. (2006): Quality characteristics of lanhouin, a traditionally processed fermented fish product in the Republic of Benin. African Journal of Food Agriculture Nutrition and Development, 6 (1): 1 - 15. Online: www.ajfand.net
- Atapattu, R. and Samarajeewa, U. (1990): Fungi associated with dried fish in Srilanka. Mycopathologia, 111, 1: 55- 59.
- Balachandran, K.K.; Perigreen, P.A. and Nair, M.R. (1978): Fish consumption trends in India. Proc. IPFC, 18 (3): 435-438. (Cited after, FAO, 1981b).
- *Blakeslee, A.F. (1915):* Lindner's roll tube method of separation cultures. Phyto pathol., 5: 68-69.
- Chang, C.; Ohshima, T. and Koizumi, C. (1991): Lipid, free amino acid, and organic acid compositions of rice-bran-fermented sardine. Nippon Suisan Gakkaishi, 57(8): 1579-1585.
- Dimond, N. and Kendall, P. (2011): Food Storage for Safety and Quality. Colorado State University no. 9. 310.
- Dorner, W.J. (1983): Production of mycotoxin by Aspergillus tamarii Kita. Appl. and Enviro. Microbiol., 46, 6: 1435-1439.
- Egyptian Organization for Standardization and Quality Control "EOSQC" (2005): ESS 1725, part 3 for salted fish (Moluha).
- *Ellis, M.B. (1971):* Dematiaceous hyphomycetes. Commonwealth agricultural Bureaux.
- *El-Morshdy, A.; Zeidan, M.A. and Sedik, M.F.S.* (1981): Studies on physical, chemical and bacteriological status of salted fishes in Sharkia province. Assiut Vet. Med. J., 8 (15& 16): 127-134.
- El-Sebaiy, Laila, A. and Metwalli, S.M. (1989): Changes in some chemical characteristics and lipid composition of salted fermented Bouri fish muscle (Mugil cephalus). Food Chemistry, 31: 41-50.
- El-Sheshnagui, Sawsan, M.L. (2006): Sanitary

evaluation of some salted fishes in Alexandria. Assiut Vet. Med. J., 52 (110): 96-110.

- *Essa, H.H.Y. (1998):* Mycological Status of Moloha, Smoked Herring and Frozen Mackerel fish in Assiut Province. Ph.D. Thesis (Meat Hygiene), Fac. Vet. Med., Assiut University.
- *FAO* (1981a): The Prevention of Losses in Cured Fish. FAO Fisheries Technical Paper No. 219.
- FAO (1981b): Guidelines for chilled fish storage Experiments. FAO Fisheries Technical Paper No. 210.
- FAO (1994): Assurance of Seafood Quality. Huss, H.H. (edit.), FAO Fisheries Technical Paper No. 334.
- *Govindan, T.K. (1985):* Fish Processing Technology. Oxford and IBH Publishing Co., New Delhi. p. 252. (Cited after, Tamil et al., 1999).
- Hassan, G. (1995): Aspergillus flavus and Aspergillus parasiticus, aflatoxigenic fungi of concern in food and feeds. J. Food Prot. 58, 12: 1395.-1404.
- Hernandez-Herrero, M.M.; Roig-Sagues, A.X.; Lopez-Sabater, E.I.; Rodriguez-Jerez, J.J. and Mora-Ventura, M.T. (1999a): Protein hydrolysis and proteinase activity during the ripening of salted anchovy (Engraulis encrasicholus L.). A microassay method for determining the protein hydrolysis. J. Agric. Food Chem., 47: 3319 - 3324.
- Hernandez-Herrero, M.M.; Roig-Sagues, A.X.; Lopez-Sabater, E.I.; Rodriguez-Jerez, J.J. and Mora-Ventura, M.T. (1999b): Total volatile basic nitrogen and other physicochemical and microbiological characteristics as related to ripening of salted anchovies. J. Food Science, 64 (2): 344 - 347.
- Hitokoto, H.; moozumi, S.; Wauke, T.; Sakai S.; Zen-Yoji, H. and Benoki, M. (1976): Annual Rep. Tokyo Metrop. Res. Lab. Public H1Th 27, 36.
- *Ikeme, A.I. (1986):* Extending the shelf-life of smoked mackerel. FAO Fisheries Report, Suppl., 329: 144-149.
- Ismail, M.A.; Nassar, A.; Ahmed, A. and Youssef, H. (1994): Mycological status of ready to eat salted fish. Assiut Vet. Med. J., 32, 63: 74-81.
- Jennie, B.S.L. and Muchtadi, D. (1978): Agriculture Product Microbiology, p. 92 - 93. Department of Education and Culture, Jakarta, Indonesia. (Cited after, Surono and Hosono, 1994)
- *Karnop, G. (1980):* Effect of storage temperature on the keeping quality of smoked habilut. Flischwirtschaff. 37, 3: 125- 128.
- *King, A.D.; Hocking, A.D. and Pitt, J.I. (1979):* Dichloran rosebengal medium for enumeration and isolation of moulds from foods. Appl. Environ. Microbiol., 37: 959-964.
- Leslie J.F. and Summerell B.A. (2006): The Fusarium Laboratory Manual. Blackwell Publishing Ltd, Iowa.
- Lu, J.Y.; Pace, R.D. and Plahar, W.D. (1988): Survey

of the microbial quality of dry fish, Casava and Okra in Ghana. J. Food Prot., 51, 8, 660-662.

- Lyhs, U.; Hatakka, M.; Maki-Petays, N.; Hyytia, E. and Korkeala, H. (1998): Microbiological quality of Finnish vacuum-packaged fishery products at retail level. Archiv fur Lebensmittelhygiene, 49 (6): 146-150.
- Majumdar, R.K.; Basu, S. and Nayak, B.B. (2006): Studies on the biochemical changes during fermentation of salt-fermented Indian shad (Tenualosa ilisha). Journal of Aquatic Food Product Technology, 15 (1): 53 - 69.
- McMahon, G. (1994): The genetics of human cancer, implications for ecotoxicology. Environmental health perspective Dec. 102 suppl. 12: 75-80.
- Mossel, A.A.D. (1977): Microbiology of Foods. Univ. of Utricht. Fac. of Vet. Med. The Netherland.
- *Moubasher, A.H. (1993):* Soil fungi in Qatar and other Arab countries. The center for scientific and Applied Research.
- National Research Council of Thailand "NRCT" (1981-1982): Report on Thai Traditional Fermented Food Research Project, Phase 1, p.51 (Cited after, Adams et al., 1985)
- Nayel, M.S.Kh. (2007): Microbiological Status of Some Marketed Canned and Pickled Fish. M.V.Sc. Thesis (Food Control) Fac. Vet. Med., Moshtohor, Benha University.
- Novotny, L.; Dorska, L.; Lorencova, A.; Beran, V. and Pavlik, I. (2004): Fish: a potential source of bacterial pathogens for human beings. Review Article. Vet. Med.-Czech, 49 (9): 343-358.
- Perisse, J.; Stoces, F. and Paci, C. (1974): Zambia, The food economy of Zambia. Rome, FAO, ENS: DP / ZAM / 69 /512 Technical Report 1. (Cited after, FAO, 1981b).
- *Pitt, J.I. (2000):* Toxigenic fungi and mycotoxin. British Medical Bulletin, 56 (1): 184-192.
- *Pitt, J.I. (1979):* An appraisal of identification methods for Penicillium species, novel taxonomic criteria based on temperature and water relations. Mycologia, 65: 1135-1157.
- *Pitt, J.I. and Hocking, A.D. (2009):* Fungi and food spoilage Book, 3rd Ed., Springer, New York.
- Raper, K.B. and Fennell, D.L. (1965): The genus Aspergillus. Williams and Wilkins company, Baltimor.
- Sakai, H.; Caldo, G.A. and Kozaki, M. (1983): The fermented fish food Burong- isda in the Philippines. J. Agriculture Science (Tokyo), 28(2): 138 - 144. (Cited after, Adams et al. 1985).
- Samson, R.A.; Hoekstra, E.S. and Frisvad, J.C. (2004): Introduction to food borne fungi, 7th Ed. Centraal bureau voor Schimmelcultures, Utrecht.
- Sanni, A.I.; Asiedu, M. and Ayernor, G.S. (2002):

Microflora and chemical composition of monomi, a Ghanaian fermented fish condiment. J. Food Comp. Analy., 15: 577-583.

- Sayed, S.M. (2008): Egyptian traditional salted fishes: processing technology and quality control monitoring. Ph.D. Thesis Fac. of Vet. Medicine, Assiut University.
- Schipper, M.A.A. (1978): A studies on certain spp. of *Mucor* with a key to all accepted spp. studies on Mycology. Baam, 17: 1-52.
- Shahine, A.B. (1956): Chemical Composition of Salted Fermented Fish "Feseekh" at Various Stages of Fermentation. M.Sc. Thesis, Cairo University. (Cited after El-Sebaiy and Metwalli, 1989).
- Silla Santos, M.H. (1996): Biogenic amines: their importance in foods. Int. J. Food Microbiol., 29: 213-231.
- Steinkraus, K.H. (1983): Handbook of Indigenous Fermented Foods. Marcel Dekker, Inc., New York. p. 494 - 498. (Cited after, Surono and Hosono, 1994).
- Surono, U.S. and Hosono, A. (1994): Chemical and aerobic bacterial composition of "Terasi", a traditional fermented product from Indonesia. J. Food Hyg. Soc. Japan, 35 (3): 299-304.
- Tamil, Selvi, A.; Jeyachandran, P.; Indra, Jasmine, G.; Shanmugam, S.A. and Kannappan, S. (1999): Keeping quality of salt cured shark (Carcharhinus sorrah). J. Food Sci. Technol., 36 (5): 469-471.
- Ward, D.R. and Baaj, N.J. (1988): Factors affecting microbiological quality of seafoods. Food Technol., 42, 3: 85-89.
- Watson, D.H. (1993): Safety of chemicals in food chemical contaninats. Ministry of Agriculture, Fisheries and Food, London, p. 85-93.
- Wheeler, K.A.; Hocking, A.D.; Pitt, J.I. and Angawati, A.M. (1986): Fungi associated with Indonesian dried fish. Food. Microbiol. 3, 4, 351-357.
- Wheeler, K.A. and Hocking, A.D. (1993): Interaction among xerophilic fungi associated with dried salted fish. J. Appl. Bacteriol. 74; 2: 164-169.
- Yatsunami, K. and Echigo, T. (1991): Isolation of salt tolerant histamine-forming bacteria from commercial rice-bran pickles of sardine. Nippon Suisan Gakkaishi. 57 (9): 1723-1728.
- Youssef, M.S.; Abo-Dahab; N.F. and Farghaly, R.M. (2003): Studies on mycological status of salted fish (Moloha) in Upper Egypt. South Valley Univ. J. Mycobiology, 31(36): 166-172.
- Yung-Hsiang, T.; Chueh-Yueh, L.; Liang-Tan, C.; Tsong-Ming, L.; Cheng-I, W. and Deng-Fwu, H. (2006): Histamine contents of fermented fish products in Taiwan and isolation of histamine-forming bacteria. Food Chem., 98: 64-70.

تقييم الحالة الفطرية لأسماك كلب السمك المملح فى محافظة أسيوط

هشام عبد المعز إسماعيل ، ماضى أحمد إسماعيل ، حسين يوسف أحمد ، علاء الدين كمال يوسف

Email: hesham.ismail@yahoo.com Assiu

Assiut University web-site: <u>www.aun.edu.eg</u>

أجريت هذه الدراسة علي ٢٥ عينة من اسماك الملوحة (كلب السمك المملح) تم تجميعها عشوائيا من منافذ بيع الأسماك المملحة في محافظة أسيوط بغرض تقييم الحالة الفطرية لها باستخدام ثلاث بيئات مختلفة وهي ديكلوران روز بنجال كلورامفنيكول، مستخلص المالت المحناف إليها ٢٠% ملح طعام. كما تم تقييم الأسماك حسيا بالأضافة الي معائلة أسيوط بغرض تقييم الحالة الفطرية لها باستخدام ثلاث بيئات مختلفة وهي ديكلوران روز بنجال كلورامفنيكول، مستخلص المالت المحناف إليها ٢٠% ملح طعام. كما تم تقييم الأسماك حسيا بالأضافة الي قياس الأيون الهيدروجيني وكلوريد الصوديوم. أظهرت نتأئج التقييم الحسي أن ١٢% من العينات كانت غير مقبولة ظاهريا بينما قياس الأيون الهيدروجيني وكلوريد الصوديوم. أظهرت نتأئج التقييم الحسي أن ١٢% من العينات كانت غير مقبولة ظاهريا بينما المملحة علي التوالي، أما بالنسبة لقيم ملح الطعام فقد تراوحت بين ٢٠. ٢ ± ٢٠. و ٢٨. ± ٣٠. في جلد و عضلات الأسماك ململحة علي التوالي، أما بالنسبة لقيم ملح الطعام فقد تراوحت بين ٢٠. ١٠. ٢٠. و ٢٠. ± ٢٠. في جلد وعضلات الأسماك ما مملحة علي التوالي، أما بالنسبة لقيم ملح الطعام فقد تراوحت بين ٢٠. ١٠. ٢ ـ ٢٠. ما عنوسط ٢٠. في جلد و عضلات الأسماك عزله و تصنيفه من الفطريات ٢٠ نوع، كان منها ٦١ نوع باستخدام البيئة الأولى و ٤٦ نوع باستخدام البيئة الأولى و ٢٦ نوع باستخدام البيئة الثائية، و ٢٠ في عض الأنواع الغير مصنفة من الخمائر التي تم عزلها على الثلاث بيئات المستخدمة. كان من أكثر الأنواع التي تم عزلها على البيئة الثائية، و ١٩ نوع ماتخدام البيئة الأولى و ٢٢ نوع باستخدام البيئة الثائية، و ٢١ نوع المات بيئواع الغير مصنفة من الخمائر التي تم عزلها على الثلاث بيئات المستخدمة. كان من ما باستخدام البيئة الأولى و ٢٤ نوع باستخدام البيئة الأولى و ٢٢ نوع بالتخدام البيئة الأولى و ٢٢ نوع بالتخدام البيئة الأولى تنتمى إلى أجناس الاسبرجلس، بيتروميسس، بنسليوم، الخمائر ، كلادوسبوريوم بينما أكثر الأنواع التي تم عزلها على البيئة الثائية فقد سجلت أكثر الأنواع التي تم عزلها على البيئة الثائية فقد سجلت أكثر الأنواع التي تم عزلها على البيئة الثائية فقد سجلت أكثر الأنواع التي تم عزلها على البيئة الثائية في السبرجلس، كلادوسبوريوم وإيوريوم وإيوم مال ما وريوريوم ويمان مان مان أكثر الأنواع عزلا على البيئة الأنولي الموريوم وإلى مالمول ولمال بليما

الكلمات الكاشفة: فطريات، تقييم حسي، كلوريد الصوديوم ، الأيون الهيدروجيني ، الأسماك المملحة.