DETECTION OF THE PARASITES WHICH INFECT THE PIGEONS IN THE SHARQAT CITY, SALAH AL-DEEN PROVINCE

A. UL-JABBAR M.H. ALJOBURI; N.A. JASSIM and ISMAEL I. HASAN
Faculty of Veterinary Medicine, University of Tikrit, Iraq.

Received: 30 December 2018; Accepted: 15 January 2019

ABSTRACT

The study was designed to detect the parasites that affect the bathroom (males and females) in different areas of the Sharqat city, Salah Al-Deen province. The study used (74 pigeons). The results of the presence of ten types of parasites with percentages: Raillietina tetragona 12(16.2%), among the pigeons. Other parasites encountered included; Raillietina echinobothrida. 10(13.5%), Ascaridia columbæ 9(12.1%), Capillaria spp 9(12.2%), Argas persicus 8(10.8%), Menopon gallinae 7(9.4%), Columbicola columbæ 7(9.5%), Eimeria spp 6(8.1%), Leucocytozoon spp 4(5.5%), and Haemoproteus spp 2(2.8%). We concluded from this study that pigeons with different types of parasites (internal and external) recorded the highest parasitic infection Raillietina tetragona.

Key words: Parasites, Pigeons, City of Sharqat, Salah Al-Deen province.

INTRODUCTION

Pigeons one of bird species which found of ancient times, it adapted worldwide to live in areas around the cities and they everywhere in urban environments (Natala et al., 2009). It is widely distributed in the world including Iraq, in some countries the pigeon are used for human food as well as ornamental purposes (Klein, 2008, Vazquez et al., 2010). Pigeons are kept in Iraq for ornamental purposes, therefore pigeons we breed like other precious birds in the urban areas despite pigeon are considered as a serious health problem for human due to diseases transport (Sari, 2008, Zangana, 1982). It may be responsible for carry some pathogens as Newcastle disease, Salmonella and Aspergillus (Al-Jumailly, 1989). Pigeon infestations by external parasites (Lice & mites) which may be responsible for decrease power flight of bird’s, due to produced perforate the large wing- and tail-feathers which help them to increase lost areas from the wing surface, lower flight efficiency and, it may help to transport agents of diseases by suck the blood (Radfar et al., 1989, Marques, 2007). Pigeons are infected by various numbers of gastrointestinal parasites and blood parasites which considered as a dangerous and life threatening and cause illness for it (Gilik and Arslan, 2011, Adang et al., 2008). Aimed the study for determined presence of external parasites, gastrointestinal parasites and blood parasites which infected the pigeons in the Sharqat city, Salah Al-Deen province.

MATERIALS AND METHODS

Collection of 145 pigeons (Columba livia domestica) from local market at the Sharqat city, these samples consist of [34] adult males and 40) adult females during the period from February to May 2018. The skin and the feathers were examined with the naked eye and using the magnifying glass from the head to the feet and through the neck, wings and thighs to isolate the external parasites. The digestive system was taken of the pigeons immediately after slaughter and examined the contents of the intestine to detect the internal parasites and wash the intestinal mucosa with the physiological solution to isolate and collect the attached worms (Al-Hubity and Al-Habib, 1979, McDougald, 2003). The different parasites were identified according to (Soulsby, 1982). The pigeons feces was taken and examined in laboratory carried out using the buoyancy method to search for cylindrical and striped eggs and the deposition method to detect the eggs (Charles, 1998). Collected the blood samples by using the disposable syringes of insulin for blood draw through a brachial vein. Each sample provided two blood smears, fixed with methanol and stained with Quick Panoptic and Giemsa dyes according to (Foronda et al., 2004). The slides were examined under light microscopy by using oil immersion lenses as described by (Soulsby, 1986).

Corresponding author: A. UL-JABBAR M.H. ALJOBURI
E-mail address: abduljabbar81n@gmail.com
Present address: Faculty of Veterinary Medicine, University of Tikrit, Iraq.

{74} pigeons samples infected
RESULTS

The results of this study can be illustrated from the following figures and tables:

Fig. (1) Scolex of Raillietina tetragona x40

Fig. (2) R. tetragona gravid segment x40

Fig. (3) Ascaridia columbae

Fig. (4) Capillaria spp. x40

Fig. (5) Columbicola columbae x40

Fig. (6) Menopon gallinae x40
This study recorded that different types of (internal and external) parasites species in both males & females of Pigeons (Columba livia domestica) collecting specimens from different locations in Sharqat city infected by single infestation in males 15(20.3%) and mixed infestation 17(23.1%), but in females single infestation 22(31%) and mixed infestation 19(25.6%) (Table -1). Raillietina tetragona was found to be the most prevalent 12(16.2%), among the pigeons. Other parasites encountered included; Raillietina echinobothrida, 10(13.5%), Ascaridia colombae 9(12.1%), Capillaria spp 9(12. 2%), Argas persicus 8(10.8 %), Menopon gallinae 7(9.4%), Columbicola columbae 7(9.5%), Eimeria spp 6(8.1%), Leucocytozoon spp 4(5.5%), and Haemoproteus spp 2(2.8%). (Table- 1 & Table-2)

Table 1: Prevalence of parasites which infect the pigeons in the city of Sharqat, Salah Al-Deen province.

<table>
<thead>
<tr>
<th>Parasitic infestations</th>
<th>Males</th>
<th></th>
<th>Females</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. positive</td>
<td>%</td>
<td>No. positive</td>
<td>%</td>
</tr>
<tr>
<td>Single infestation</td>
<td>15</td>
<td>20.3</td>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td>Mixed infestation</td>
<td>17</td>
<td>23.1</td>
<td>19</td>
<td>25.6</td>
</tr>
</tbody>
</table>
Table 2: Prevalence of the external and internal parasites which infect the pigeons (males & females) in the Sharqat city, Salah Al-Deen province.

<table>
<thead>
<tr>
<th>Parasitic species</th>
<th>Infected no.</th>
<th>Positive no. of male</th>
<th>%</th>
<th>Positive no. of female</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Helminthes</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raillietina tetragona</td>
<td>12</td>
<td>5</td>
<td>6.8</td>
<td>7</td>
<td>9.4</td>
</tr>
<tr>
<td>Raillietina echmobothrida</td>
<td>10</td>
<td>6</td>
<td>8.1</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>Ascaridia columbae</td>
<td>9</td>
<td>4</td>
<td>5.4</td>
<td>5</td>
<td>6.7</td>
</tr>
<tr>
<td>Capillaria columbae</td>
<td>9</td>
<td>7</td>
<td>9.5</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td><strong>Ectoparasites</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argas persicus</td>
<td>8</td>
<td>4</td>
<td>5.4</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>Menopon gallinae</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>Columbicola columbae</td>
<td>7</td>
<td>2</td>
<td>2.7</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td><strong>Coccidiosis</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eimeria spp</td>
<td>6</td>
<td>2</td>
<td>2.7</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td><strong>Blood parasites</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucocytozoon spp</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Haemoproteus spp</td>
<td>2</td>
<td>1</td>
<td>1.4</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td><strong>Total grand</strong></td>
<td>74</td>
<td>37</td>
<td>50</td>
<td>37</td>
<td>50</td>
</tr>
</tbody>
</table>

**DISCUSSION**

The results of this study reported about racing pigeons infection by *Raillietina tetragona* in both males & female 12(16.2%) (Figure 1) similar to results the researchers (Sari et al., 2008). While others (Ashrafi Helan et al., 2010) were reported in domesticated pigeons that results of *Raillietina tetragona* which is less than present for our study results our study found *Raillietina echmobothrida* 10 (13.5%) (Figure 2) the result agreed with researchers (Radfar et al., 2012, Ghosh et al., 2014) while (Khezerpour and Naem, 2013) recorded 32% infected pigeon with *Raillietina echmobothrida*. *Raillietina* is the most prevalent helminthes in pigeon, this information may be play dangerous role in poultry and may be of human health (Ferial et al., 2018). We also recorded a worm belong to *Ascaridia columbae* 9(12.1%) (Figure 3). These observations agree with Foronda et al. (2004), while El-Dakhly et al (2016) reported 21% the pigeon infected with *Ascaridia spp*.

In the present study infection with *Capillaria spp.* was 9(12.2%) (Figure 4). The prevalence of *Capillaria spp.* was like that recorded by Baris et al. (2008) in Turkey, while (12.1%). It was higher than that recorded by Khezerpour and Naem (2013) in domestic pigeons in Iran, but lower than those recorded by Ghosh et al. (2014) in Bangladesh 22% *Capillaria* infections were observed in pigeons along with *Ascaridia columbae*, causing cachexia and haemorrhagic enteritis (Abed et al., 2014). Our result showed that 8(10.8) % of examined pigeon is infested with the larval stage of soft tick *Argas persicus* (Figure 5), it also Msoffe et al. (2010) reported in Tanzania that tick infestation were 12%. *Argas persicus* can cause paralysis because it toxin produce and can also transmit a disease called spirochaetosis, which is a gut condition that leads to diarrhea (Ali et al., 2012). The study also recorded another different species of ectoparasites were identified: Menopon gallinae 7(9.4%) (Figure 6) and Columbicola columbae 7(9.5%) (Figure 7). These species had been reported in several studies as the commonest and most important ectoparasites infestation of pigeon like (Mushi et al., 2000) and (Jahantigh et al., 2016). Similar reports have been documented from Sulaimani province, Kurdistan region/Iraq (Shadan et al., 2018) and Dhaka, Bangladesh (Aleya and Sabrina, 2011). These parasites suck the blood of infected pigeon which lead to pigeon emaciation and infestation the (Al-Barwari and Isam, 2012). The prevalence rate of *Eimeria spp.* 6(8.1%) (Figure 8) in this study and similar with Sivajothi et al (2014), while (Parsani et al., 2014) from India recorded the high infected rate with *Eimeria spp.* (48.3%) compared with the present study. Emirian which responsible for cause Coccidiosis usually runs without clear clinical manifestations, with affected pigeons look like healthy, but has watery diarrhea (Balicka-Ramisz and Pilarczyk, 2014). The study results determined the more common blood parasite found in pigeons were *Leucocytozoon spp.* 4(5.4%), and *Haemoproteus spp.* 2(2.8%) (Figures 9 & 10) which agreed with the studies done in (Al-Biatee, 2011, Hussein and Abdelrahim, 2016) found *Haemoproteus spp.* Infected the domestic. In other countries the researchers (Saleem et al., 2016, Sürsal et al., 2017) reported that the prevalence of this blood parasite was higher than that found in this study. Also (Samani et al., 2013) found a prevalence of 24% in Southwest Iran.

28
REFERENCES


McDougald, L.R. (2003): In: Saif YM. (chief editor) Barnes HJ, Glisson JR, Fadly AM,
الفحص عن الطفيليات التي تصيب الحمام في مدينة الشرقاط، محافظة صلاح الدين

تم استخدام في الدراسة (25) حمامًا. أظهرت نتائج وجود عشرة أنواع من الطفيليات مع نسبها المئوية وهي:

Ascaridia columbae، 10(13.5) طفيلي. Ralillietina echobothrida، 12(16.2) طفيلي. Ralillietina tetragona، 7(9.4) طفيلي. Menopon gallinae، 8(10.8) طفيلي. Arugas persicus، 9(12.2) طفيلي. Capillaria spp، 9(12.1) طفيلي. Haemoproteus، 4(5.5) طفيلي. Leucocytovenosn spp، 6(8.1) طفيلي. Eimeria spp، 7(9.5) طفيلي. Columbiocola columbae، 2(2.8) طفيلي. هذه الأنواع تم قياس عدد الحمامات المصاب بالطفيليات المختلفة من الطفيليات (الداخلية والخارجية) وقد سجلت على


